Molecules and Cells

, Volume 32, Issue 2, pp 189–196 | Cite as

The effect of antioxidants on the production of pro-inflammatory cytokines and orthodontic tooth movement

  • Hwa Sung Chae
  • Hyun-Jung Park
  • Hyo Rin Hwang
  • Arang Kwon
  • Won-Hee Lim
  • Won Jin Yi
  • Dong-Hun Han
  • Young Ho Kim
  • Jeong-Hwa Baek
Article

Abstract

Orthodontic force causes gradual compression of the periodontal ligament tissues, which leads to local hypoxia in the compression side of the tissues. In this study, we investigated whether antioxidants exert a regulatory effect on two factors: the expression of pro-inflammatory cytokines in human periodontal ligament fibroblasts (PDLFs) that were exposed to mechanical compression and hypoxia and the rate of orthodontic tooth movement in rats. Exposure of PDLFs to mechanical compression (0.5–3.0 g/cm2) or hypoxic conditions increased the production of intracellular reactive oxygen species. Hypoxic treatment for 24 h increased the mRNA levels of IL-1β, IL-6 and IL-8 as well as vascular endothelial growth factor (VEGF) in PDLFs. Resveratrol (10 nM) or N-acetylcysteine (NAC, 20 mM) diminished the transcriptional activity of hypoxiainducible factor-1 and hypoxia-induced expression of VEGF. Combined treatment with mechanical compression and hypoxia significantly increased the expression levels of IL-1β, IL-6, IL-8, TNF-α and VEGF in PDLFs. These levels were suppressed by NAC and resveratrol. The maxillary first molars of rats were moved mesially for seven days using an orthodontic appliance. NAC decreased the amount of orthodontic tooth movement compared to the vehicle-treated group. The results from immunohistochemical staining demonstrated that NAC suppressed the expression of IL-1β and TNF-α in the periodontal ligament tissues compared to the vehicle-treated group. These results suggest that antioxidants have the potential to negatively regulate the rate of orthodontic tooth movement through the down-regulation of pro-inflammatory cytokines in the compression sides of periodontal ligament tissues.

Keywords

antioxidant hypoxia mechanical compression orthodontic tooth movement pro-inflammatory cytokine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, C., Nomura, Y., Ishikawa, M., Noda, K., Choi, J.W., Yashiro, Y., Hanada, N., and Nakamura, Y. (2010). HSPA1A is upregulated in periodontal ligament at early stage of tooth movement in rats. Histochem. Cell Biol. 134, 337–343.PubMedCrossRefGoogle Scholar
  2. Arnett, T.R., Gibbons, D.C., Utting, J.C., Orriss, I.R., Hoebertz, A., Rosendaal, M., and Meghji, S. (2003). Hypoxia is a major stimulator of osteoclast formation and bone resorption. J. Cell. Physiol. 196, 2–8.PubMedCrossRefGoogle Scholar
  3. Aruoma, O.I., Halliwell, B., Hoey, B.M., and Butler, J. (1989). The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6, 593–597.PubMedCrossRefGoogle Scholar
  4. Bass, D.A., Parce, J.W., Dechatelet, L.R., Szejda, P., Seeds, M.C., and Thomas, M. (1983). Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910–1917.PubMedGoogle Scholar
  5. Burkhardt, H., Schwingel, M., Menninger, H., Macartney, H.W., and Tschesche, H. (1986). Oxygen radicals as effectors of cartilage destruction. Direct degradative effect on matrix components and indirect action via activation of latent collagenase from polymorphonuclear leukocytes. Arthritis Rheum. 29, 379–387.PubMedCrossRefGoogle Scholar
  6. Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., and Schumacker, P.T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95, 11715–11720.PubMedCrossRefGoogle Scholar
  7. Chun, Y.S., Choi, E., Kim, T.Y., Kim, M.S., and Park, J.W. (2002). A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1alpha gene. Biochem. J. 362, 71–79.PubMedCrossRefGoogle Scholar
  8. Dunn, M.D., Park, C.H., Kostenuik, P.J., Kapila, S., and Giannobile, W.V. (2007). Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 41, 446–455.PubMedCrossRefGoogle Scholar
  9. Gao, P., Zhang, H., Dinavahi, R., Li, F., Xiang, Y., Raman, V., Bhujwalla, Z.M., Felsher, D.W., Cheng, L., Pevsner, J., et al. (2007). HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12, 230–238.PubMedCrossRefGoogle Scholar
  10. Hamrick, S.E., McQuillen, P.S., Jiang, X., Mu, D., Madan, A., and Ferriero, D.M. (2005). A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci. Lett. 379, 96–100.PubMedCrossRefGoogle Scholar
  11. Jager, A., Zhang, D., Kawarizadeh, A., Tolba, R., Braumann, B., Lossdorfer, S., and Gotz, W. (2005). Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur. J. Orthod. 27, 1–11.PubMedCrossRefGoogle Scholar
  12. Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–220.PubMedCrossRefGoogle Scholar
  13. Janssen-Heininger, Y.M., Poynter, M.E., and Baeuerle, P.A. (2000). Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic. Biol. Med. 28, 1317–1327.PubMedCrossRefGoogle Scholar
  14. Jun, J.H., Lee, S.H., Kwak, H.B., Lee, Z.H., Seo, S.B., Woo, K.M., Ryoo, H.M., Kim, G.S., and Baek, J.H. (2008). N-acetylcysteine stimulates osteoblastic differentiation of mouse calvarial cells. J. Cell. Biochem. 103, 1246–1255.PubMedCrossRefGoogle Scholar
  15. Kaku, M., Kohno, S., Kawata, T., Fujita, I., Tokimasa, C., Tsutsui, K., and Tanne, K. (2001). Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice. J. Dent Res. 80, 1880–1883.PubMedCrossRefGoogle Scholar
  16. Kim, D.Y., Jun, J.H., Lee, H.L., Woo, K.M., Ryoo, H.M., Kim, G.S., Baek, J.H., and Han, S.B. (2007). N-acetylcysteine prevents LPS-induced pro-inflammatory cytokines and MMP2 production in gingival fibroblasts. Arch. Pharm. Res. 30, 1283–1292.PubMedCrossRefGoogle Scholar
  17. Knowles, H.J., and Athanasou, N.A. (2008). Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J. Pathol. 215, 56–66.PubMedCrossRefGoogle Scholar
  18. Kohno, S., Kaku, M., Tsutsui, K., Motokawa, M., Ohtani, J., Tenjo, K., Tohma, Y., Tokimasa, C., Fujita, T., Kawata, T., et al. (2003). Expression of vascular endothelial growth factor and the effects on bone remodeling during experimental tooth movement. J. Dent. Res. 82, 177–182.PubMedCrossRefGoogle Scholar
  19. Kohno, S., Kaku, M., Kawata, T., Fujita, T., Tsutsui, K., Ohtani, J., Tenjo, K., Tohma, Y., Motokawa, M., Shigekawa, M., et al. (2005). Neutralizing effects of an anti-vascular endothelial growth factor antibody on tooth movement. Angle Orthod. 75, 797–804.PubMedGoogle Scholar
  20. Kupisiewicz, K., Boissy, P., Abdallah, B.M., Hansen, F.D., Erben, R.G., Savouret, J.F., Soe, K., Andersen, T.L., Plesner, T., and Delaisse, J.M. (2010). Potential of resveratrol analogues as antagonists of osteoclasts and promoters of osteoblasts. Calcif. Tissue Int. 87, 437–449.PubMedCrossRefGoogle Scholar
  21. Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N., and Lee, S.Y. (2005). A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852–859.PubMedCrossRefGoogle Scholar
  22. Loboda, A., Jozkowicz, A., and Dulak, J. (2010). HIF-1 and HIF-2 transcription factors — similar but not identical. Mol. Cells 29, 435–442.PubMedCrossRefGoogle Scholar
  23. Meier, B., Radeke, H.H., Selle, S., Younes, M., Sies, H., Resch, K., and Habermehl, G.G. (1989). Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem. J. 263, 539–545.PubMedGoogle Scholar
  24. Millen, A.E., Dodd, K.W., and Subar, A.F. (2004). Use of vitamin, mineral, nonvitamin, and nonmineral supplements in the United States: The 1987, 1992, and 2000 National Health Interview Survey results. J. Am. Diet Assoc. 104, 942–950.PubMedCrossRefGoogle Scholar
  25. Motohira, H., Hayashi, J., Tatsumi, J., Tajima, M., Sakagami, H., and Shin, K. (2007). Hypoxia and reoxygenation augment boneresorbing factor production from human periodontal ligament cells. J. Periodontol. 78, 1803–1809.PubMedCrossRefGoogle Scholar
  26. Ogasawara, T., Yoshimine, Y., Kiyoshima, T., Kobayashi, I., Matsuo, K., Akamine, A., and Sakai, H. (2004). In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J. Periodontal Res. 39, 42–49.PubMedCrossRefGoogle Scholar
  27. Park, H.J., Baek, K.H., Lee, H.L., Kwon, A., Hwang, H.R., Qadir, A.S., Woo, K.M., Ryoo, H.M., and Baek, J.H. (2011). Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts. Mol. Cell [Epub ahead of print].Google Scholar
  28. Schubert, S.Y., Neeman, I., and Resnick, N. (2002). A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J. 16, 1931–1933PubMedGoogle Scholar
  29. Steinbach, J.P., Klumpp, A., Wolburg, H., and Weller, M. (2004). Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res. 64, 1575–1578.PubMedCrossRefGoogle Scholar
  30. Storz, G., and Imlay, J.A. (1999). Oxidative stress. Curr. Opin. Microbiol. 2, 188–194.PubMedCrossRefGoogle Scholar
  31. Teixeira, C.C., Khoo, E., Tran, J., Chartres, I., Liu, Y., Thant, L.M., Khabensky, I., Gart, L.P., Cisneros, G., and Alikhani, M. (2010). Cytokine expression and accelerated tooth movement. J. Dent. Res. 89, 1135–1141.PubMedCrossRefGoogle Scholar
  32. Toker, H., Ozdemir, H., Eren, K., Ozer, H., and Sahin, G. (2009). Nacetylcysteine, a thiol antioxidant, decreases alveolar bone loss in experimental periodontitis in rats. J. Periodontol. 80, 672–678.PubMedCrossRefGoogle Scholar
  33. Victor, V.M., Rocha, M., and De la Fuente, M. (2003). N-acetylcysteine protects mice from lethal endotoxemia by regulating the redox state of immune cells. Free Radic. Res. 37, 919–929.PubMedCrossRefGoogle Scholar
  34. Vissers, M.C., Gunningham, S.P., Morrison, M.J., Dachs, G.U., and Currie, M.J. (2007). Modulation of hypoxia-inducible factor-1 alpha in cultured primary cells by intracellular ascorbate. Free Radic. Biol. Med. 42, 765–772.PubMedCrossRefGoogle Scholar
  35. Wada, T., Nakashima, T., Hiroshi, N., and Penninger, J.M. (2006). RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25.PubMedCrossRefGoogle Scholar
  36. Winyard, P.G., and Blake, D.R. (1997). Antioxidants, redox-regulated transcription factors, and inflammation. Adv. Pharmacol. 38, 403–421.PubMedCrossRefGoogle Scholar
  37. Xu, W., Chi, L., Xu, R., Ke, Y., Luo, C., Cai, J., Qiu, M., Gozal, D., and Liu, R. (2005). Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord 43, 204–213.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Hwa Sung Chae
    • 1
    • 2
  • Hyun-Jung Park
    • 1
  • Hyo Rin Hwang
    • 1
  • Arang Kwon
    • 1
  • Won-Hee Lim
    • 2
  • Won Jin Yi
    • 3
  • Dong-Hun Han
    • 4
  • Young Ho Kim
    • 5
  • Jeong-Hwa Baek
    • 1
    • 6
  1. 1.Department of Molecular Genetics, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea
  2. 2.Department of Orthodontics, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea
  3. 3.Department of Oral and Maxillofacial Radiology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea
  4. 4.Department of Preventive and Social Dentistry, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea
  5. 5.Department of Orthodontics, The Institute of Oral Health Science, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  6. 6.Department of Pharmacology and Dental Therapeutics, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations