Molecules and Cells

, Volume 32, Issue 2, pp 173–179 | Cite as

Association between Epstein-Barr virus infection and chemoresistance to docetaxel in gastric carcinoma

  • Hee Jong Shin
  • Do Nyun Kim
  • Suk Kyeong LeeEmail author


Epstein-Barr virus (EBV) is associated with human cancers such as nasopharyngeal carcinoma, Burkitt’s lymphoma, Hodgkin’s disease, and gastric carcinoma (GC). EBV is associated with about 10% of all GC cases globally. EBV-associated GC has distinct features from EBV-negative GC. However, it is still unclear if EBV infection has any effect on GC chemoresistance. Cell proliferation assay, cell cycle analysis, and active caspase Western blot revealed that the EBV-positive GC cell line (AGS-EBV) showed chemoresistance to docetaxel compared to the EBV-negative GC cell line (AGS). Docetaxel treatment increased expression of Bax similarly in AGS and AGS-EBV cell lines. However, Bcl-2 induction was markedly higher in AGS-EBV cells, after docetaxel treatment. Although docetaxel increased the expression of p53 to a similar extent in both cell lines, induction of p21 in AGS-EBV cells was lower than in AGS cells. Furthermore, expression of survivin was higher in AGS-EBV cells than in AGS cells following docetaxel treatment as well as at basal state. EBVlytic gene expression was induced by docetaxel treatment in AGS-EBV cells. The results suggest that EBV infection and lytic induction confers chemoresistance to GC, possibly by regulating cellular and EBV latent and lytic gene expression.


apoptosis cell cycle related genes chemoresistance docetaxel EBV-positive gastric carcinoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, T., and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400–414.PubMedCrossRefGoogle Scholar
  2. Akiba, S., Koriyama, C., Herrera-Goepfert, R., and Eizuru, Y. (2008). Epstein-Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci. 99, 195–201.PubMedCrossRefGoogle Scholar
  3. Bornkamm, G.W., and Hammerschmidt, W. (2001). Molecular virology of Epstein-Barr virus. Phil. Trans. R. Soc. B. 356, 437–459.PubMedCrossRefGoogle Scholar
  4. Burke, A.P., Yen, T.S., Shekitka, K.M., and Sobin, L.H. (1990). Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod. Pathol. 3, 377–380.PubMedGoogle Scholar
  5. Chou, S.P., Tsai, C.H., Li, L.Y., Liu, M.Y., and Chen, J.Y. (2004). Characterization of monoclonal antibody to the Epstein-Barr virus BHRF1 protein, a homologue of Bcl-2. Hybrid Hybridomics 23, 29–37.PubMedCrossRefGoogle Scholar
  6. Daibata, M., Bandobashi, K., Kuroda, M., Imai, S., Miyoshi, I., and Taguchi, H. (2005). Induction of lytic Epstein-Barr virus (EBV) infection by synergistic action of rituximab and dexamethasone renders EBV-positive lymphoma cells more susceptible to ganciclovir cytotoxicity in vitro and in vivo. J. Virol. 79, 5875–5879.PubMedCrossRefGoogle Scholar
  7. Desbien, A.L., Kappler, J.W., and Marrack, P. (2009). The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim. Proc. Natl. Acad. Sci. USA 106, 5663–5668.PubMedCrossRefGoogle Scholar
  8. Feng, W.H., Israel, B., Raab-Traub, N., Busson, P., and Kenney, S.C. (2002). Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res. 62, 1920–1926.PubMedGoogle Scholar
  9. Feng, W.H., Hong, G., Delecluse, H.J., and Kenney, S.C. (2004). Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J. Virol. 78, 1893–1902.PubMedCrossRefGoogle Scholar
  10. He, Y., Cai, S., Zhang, G., Li, X., Pan, L., and Du, J. (2008). Interfering with cellular signaling pathways enhances sensitization to combined sodium butyrate and GCV treatment in EBV-positive tumor cells. Virus Res. 135, 175–180.PubMedCrossRefGoogle Scholar
  11. Hino, R., Uozaki, H., Inoue, Y., Shintani, Y., Ushiku, T., Sakatani, T., Takada, K., and Fukayama, M. (2008). Survival advantage of EBV-associated gastric carcinoma: survivin up-regulation by viral latent membrane protein 2A. Cancer Res. 68, 1427–1435.PubMedCrossRefGoogle Scholar
  12. Hino, R., Uozaki, H., Murakami, N., Ushiku, T., Shinozaki, A., Ishikawa, S., Morikawa, T., Nakaya, T., Sakatani, T., Takada, K., et al. (2009). Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res. 69, 2766–2774.PubMedCrossRefGoogle Scholar
  13. Huang, H., Pan, X., Zhou, S., Li, Z., Yu, L., Kong, X., and Zheng, Q. (1999). Flow cytometric analysis of BHRF1 expression prohibiting apoptosis induced by radiation. Ann. Otol. Rhinol. Laryngol. 108, 481–484.PubMedGoogle Scholar
  14. Imai, S., Koizumi, S., Sugiura, M., Tokunaga, M., Uemura, Y., Yamamoto, N., Tanaka, S., Sato, E., and Osato, T. (1994). Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc. Natl. Acad. Sci. USA 91, 9131–9135.PubMedCrossRefGoogle Scholar
  15. Jeon, J.P., Nam, H.Y., Shim, S.M., and Han, B.G. (2009). Sustained viral activity of Epstein-Barr virus contributes to cellular immortalization of lymphoblastoid cell lines. Mol. Cells 27, 143–148.PubMedCrossRefGoogle Scholar
  16. Jones, K., Nourse, J., Corbett, G., and Gandhi, M.K. (2010). Sodium valproate in combination with ganciclovir induces lysis of EBV-infected lymphoma cells without impairing EBV-specific Tcell immunity. Int. J. Lab. Hematol. 32, e169–174.PubMedCrossRefGoogle Scholar
  17. Jung, E.J., Lee, Y.M., Lee, B.L., Chang, M.S., and Kim, W.H. (2007a). Ganciclovir augments the lytic induction and apoptosis induced by chemotherapeutic agents in an Epstein-Barr virusinfected gastric carcinoma cell line. Anticancer Drugs 18, 79–85.Google Scholar
  18. Jung, E.J., Lee, Y.M., Lee, B.L., Chang, M.S., and Kim, W.H. (2007b). Lytic induction and apoptosis of Epstein-Barr virusassociated gastric cancer cell line with epigenetic modifiers and ganciclovir. Cancer Lett. 247, 77–83.PubMedCrossRefGoogle Scholar
  19. Lee, H.S., Chang, M.S., Yang, H.K., Lee, B.L., and Kim, W.H. (2004). Epstein-barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with epsteinbarr virus-negative carcinoma. Clin. Cancer Res. 10, 1698–1705.PubMedCrossRefGoogle Scholar
  20. Liu, T.Y., Wu, S.J., Huang, M.H., Lo, F.Y., Tsai, M.H., Tsai, C.H., Hsu, S.M., and Lin, C.W. (2010). EBV-positive Hodgkin lymphoma is associated with suppression of p21cip1/waf1 and a worse prognosis. Mol. Cancer 9, 32.PubMedGoogle Scholar
  21. Lu, J., Murakami, M., Verma, S.C., Cai, Q., Haldar, S., Kaul, R., Wasik, M.A., Middeldorp, J., and Robertson, E.S. (2011). Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410, 64–75.PubMedCrossRefGoogle Scholar
  22. Luo, B., Wang, Y., Wang, X.F., Liang, H., Yan, L.P., Huang, B.H., and Zhao, P. (2005). Expression of Epstein-Barr virus genes in EBV-associated gastric carcinomas. World J. Gastroenterol. 11, 629–633.PubMedGoogle Scholar
  23. Lyseng-Williamson, K.A., and Fenton, C. (2005). Docetaxel: a review of its use in metastatic breast cancer. Drugs 65, 2513–2531.PubMedCrossRefGoogle Scholar
  24. Mei, Y.P., Zhou, J.M., Wang, Y., Huang, H., Deng, R., Feng, G.K., Zeng, Y.X., and Zhu, X.F. (2007). Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. Cell Cycle 6, 1379–1385.PubMedCrossRefGoogle Scholar
  25. Oh, S.T., Seo, J.S., Moon, U.Y., Kang, K.H., Shin, D.J., Yoon, S.K., Kim, W.H., Park, J.G., and Lee, S.K. (2004). A naturally derived gastric cancer cell line shows latency I Epstein-Barr virus infection closely resembling EBV-associated gastric cancer. Virology 320, 330–336.PubMedCrossRefGoogle Scholar
  26. Pathan, N., Aime-Sempe, C., Kitada, S., Basu, A., Haldar, S., and Reed, J.C. (2001). Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1. Neoplasia 3, 550–559.PubMedCrossRefGoogle Scholar
  27. Peng, M., and Lundgren, E. (1992). Transient expression of the Epstein-Barr virus LMP1 gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene 7, 1775–1782.PubMedGoogle Scholar
  28. Rickinson, A.B., and Kieff, E.(2001). Epstein-Barr virus. In Field’s Virology, B.M. Knipe, and P.M. Howley, eds. (Philadelphia, USA: Lippincott Williams and Wilkins), pp. 2575–2627.Google Scholar
  29. Shibata, D., and Weiss, L.M. (1992). Epstein-Barr virus-associated gastric adenocarcinoma. Am. J. Pathol. 140, 769–774.PubMedGoogle Scholar
  30. Shimizu, N., Yoshiyama, H., and Takada, K. (1996). Clonal propagation of Epstein-Barr virus (EBV) recombinants in EBV-negative Akata cells. J. Virol. 70, 7260–7263.PubMedGoogle Scholar
  31. Speck, S.H., and Ganem, D. (2010). Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8, 100–115.PubMedCrossRefGoogle Scholar
  32. Takada, K. (2000). Epstein-Barr virus and gastric carcinoma. Mol. Pathol. 53, 255–261.PubMedCrossRefGoogle Scholar
  33. van Beek, J., zur Hausen, A., Kranenbarg, E.K., Warring, R.J., Bloemena, E., Craanen, M.E., van de Velde, C.J., Middeldorp, J.M., Meijer, C.J., and van den Brule, A.J. (2002). A rapid and reliable enzyme immunoassay PCR-based screening method to identify EBV-carrying gastric carcinomas. Mod. Pathol. 15, 870–877.PubMedCrossRefGoogle Scholar
  34. Vicat, J.M., Ardila-Osorio, H., Khabir, A., Brezak, M.C., Viossat, I., Kasprzyk, P., Jlidi, R., Opolon, P., Ooka, T., Prevost, G., et al. (2003). Apoptosis and TRAF-1 cleavage in Epstein-Barr viruspositive nasopharyngeal carcinoma cells treated with doxorubicin combined with a farnesyl-transferase inhibitor. Biochem. Pharmacol. 65, 423–433.PubMedCrossRefGoogle Scholar
  35. Westphal, E.M., Blackstock, W., Feng, W., Israel, B., and Kenney, S.C. (2000). Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res. 60, 5781–5788.PubMedGoogle Scholar
  36. Wolf, H., Bogedain, C., and Schwarzmann, F. (1993). Epstein-Barr virus and its interaction with the host. Intervirology 35, 26–39.PubMedGoogle Scholar
  37. Yu, H., Kortylewski, M., and Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51.PubMedCrossRefGoogle Scholar
  38. Yvon, A.M., Wadsworth, P., and Jordan, M.A. (1999). Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 10, 947–959.PubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Research Institute of Immunobiology, Department of Medical Lifescience, College of MedicineThe Catholic University of KoreaSeoulKorea

Personalised recommendations