Molecules and Cells

, Volume 31, Issue 4, pp 295–302 | Cite as

Nanomaterials for cancer therapy and imaging



A variety of organic and inorganic nanomaterials with dimensions below several hundred nanometers are recently emerging as promising tools for cancer therapeutic and diagnostic applications due to their unique characteristics of passive tumor targeting. A wide range of nanomedicine platforms such as polymeric micelles, liposomes, dendrimers, and polymeric nanoparticles have been extensively explored for targeted delivery of anti-cancer agents, because they can accumulate in the solid tumor site via leaky tumor vascular structures, thereby selectively delivering therapeutic payloads into the desired tumor tissue. In recent years, nanoscale delivery vehicles for small interfering RNA (siRNA) have been also developed as effective therapeutic approaches to treat cancer. Furthermore, rationally designed multi-functional surface modification of these nanomaterials with cancer targeting moieties, protective polymers, and imaging agents can lead to fabrication versatile theragnostic nanosystems that allow simultaneous cancer therapy and diagnosis. This review highlights the current state and future prospects of diverse biomedical nanomaterials for cancer therapy and imaging.


cancer therapy drug delivery system imaging nanoparticles small interfering RNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akinc, A., Thomas, M., Klibanov, A.M., and Langer, R. (2005). Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7, 657–663.PubMedCrossRefGoogle Scholar
  2. Allen, T.M., and Cullis, P.R. (2004). Drug delivery systems: entering the mainstream. Science 303, 1818–1822.PubMedCrossRefGoogle Scholar
  3. Bae, K.H., Lee, Y., and Park, T.G. (2007). Oil-encapsulating PEO PPO-PEO/PEG shell cross-linked nanocapsules for targetspecific delivery of paclitaxel. Biomacromolecules 8, 650–656.PubMedCrossRefGoogle Scholar
  4. Bae, K.H., Lee, K., Kim, C., and Park, T.G. (2011). Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 32, 176–184.PubMedCrossRefGoogle Scholar
  5. Bartlett, D.W., and Davis, M.E. (2007). Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjugate Chem. 18, 456–468.CrossRefGoogle Scholar
  6. Bergers, G., and Benjamin, L.E. (2003). Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410.PubMedCrossRefGoogle Scholar
  7. Bolcato-Bellemin, A., Bonnet, M., Creusat, G., Erbacher, P., and Behr, J.P. (2007). Sticky overhangs enhance siRNA-mediated gene silencing. Proc. Natl. Acad. Sci. USA 104, 16050–16055.PubMedCrossRefGoogle Scholar
  8. Burt, H.M., Zhang, X., Toleikis, P., Embree, L., and Hunter, W.L. (1999). Development of copolymers of poly(D,L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surf. B 16, 161–171.CrossRefGoogle Scholar
  9. Campbell, R.B. (2006). Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med. Chem. 6, 503–512.PubMedCrossRefGoogle Scholar
  10. Carmeliet, P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.PubMedCrossRefGoogle Scholar
  11. Chen, H., Tochilin, V., and Langer, R. (1996). Lecting-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res. 13, 1378–1383.PubMedCrossRefGoogle Scholar
  12. Chung, H.J., Hong, C.A., Lee, S.H., Jo, S.D., and Park, T.G. (2011). Reducible siRNA dimeric conjugates for efficient cellular uptake and gene silencing. Bioconjugate Chem. 22, 299–306.CrossRefGoogle Scholar
  13. Couvreur, P., and Vauthier, C. (2006). Nanotechnology: Intelligent design to treat complex disease. Pharm. Res. 23, 1417–1450.PubMedCrossRefGoogle Scholar
  14. Dalby, B., Cates, S., Harris, A., Ohki, E.C., Tilkins, M.L., Price, P.J., and Ciccarone, V.C. (2004). Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and highthroughput applications. Methods 33, 95–103.PubMedCrossRefGoogle Scholar
  15. Davis, M.E., Chen, Z.G., and Shin, D.M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782.PubMedCrossRefGoogle Scholar
  16. de Fougerolles, A., Vornlocher, H., Maraganore, J., and Lieberman, J. (2007). Interfering with disease: a progress report on siRNAbased therapeutics. Nat. Rev. Drug Disc. 6, 443–453.CrossRefGoogle Scholar
  17. Denekamp, J. (1984). Vasculature as a target for tumour therapy. Prog. Appl. Microcirc. 4, 28–38.Google Scholar
  18. Derfus, A.M., Chen, A.A., Min, D., Ruoslahti, E., and Bhatia, S.N. (2007). Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chem. 18, 1391–1396.CrossRefGoogle Scholar
  19. Djojosubroto, M.W., Choi, Y.S., Lee, H.W., and Rudolph, K.L. (2003). Telomeres and telomerase in aging, regeneration and cancer. Mol. Cell 15, 164–175.Google Scholar
  20. Dobson, J. (2006). Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287.PubMedCrossRefGoogle Scholar
  21. Duncan, R. (2003). The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360.PubMedCrossRefGoogle Scholar
  22. Dvorak, H.F., Brown, L.F., Detmar, M., and Dvorak, A.M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–1039.PubMedGoogle Scholar
  23. Dykxhoorn, D.M., and Lieberman, J. (2006). Knocking down disease with siRNAs. Cell 126, 231–235.PubMedCrossRefGoogle Scholar
  24. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  25. Ferrara, N., and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25.PubMedCrossRefGoogle Scholar
  26. Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171.PubMedCrossRefGoogle Scholar
  27. Fidler, I.J., Balasubramanian, K., Lin, Q., Kim, S.W., and Kim, S.J. (2010). The brain microenvironment and cancer metastasis. Mol. Cells 30, 93–98.PubMedCrossRefGoogle Scholar
  28. Folkman, J. (1974). Tumor angiogenesis. Adv. Cancer Res. 19, 331–358.PubMedCrossRefGoogle Scholar
  29. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., and Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976.PubMedCrossRefGoogle Scholar
  30. Goldberg, M., Langer, R., and Jia, X. (2007). Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 18, 241–268.PubMedCrossRefGoogle Scholar
  31. Gupta, A.K., and Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021.PubMedCrossRefGoogle Scholar
  32. Heath, J.R., and Davis, M.E. (2008). Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265.PubMedCrossRefGoogle Scholar
  33. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas, N.J., and West, J.L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549–13554.PubMedCrossRefGoogle Scholar
  34. Höbel, S., Koburger, I., John, M., Czubayko, F., Hadwiger, P., Vornlocher, H., and Aigner, A. (2010). Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab. J. Gene Med. 12, 287–300.PubMedGoogle Scholar
  35. Holle, L., Hicks, L., Song, W., Holle, E., Wagner, T., and Yu, X. (2004). Bcl-2 targeting siRNA expressed by a T7 vector system inhibits human tumor cell growth in vitro. Int. J. Oncol. 24, 615–621.PubMedGoogle Scholar
  36. Hong, S., Leroueil, P.R., Majoros, I.J., Orr, B.G., Baker, J.R. Jr, and Banaszak Holl, M.M. (2007). The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115.PubMedCrossRefGoogle Scholar
  37. Hubbell, J.A. (2003). Enhancing drug function. Science 300, 595–596.PubMedCrossRefGoogle Scholar
  38. Jain, R.K. (2001). Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Del. Rev. 46, 149–168.CrossRefGoogle Scholar
  39. Juliano, R.L., and Stamp, D. (1975). Effect of particle size and charge on the clearance rates of liposomes and liposome-encapsulated drugs. Biochem. Biophys. Res. Commun. 63, 651–658.PubMedCrossRefGoogle Scholar
  40. Jung, S., Lee, S.H., Mok, H., Chung, H.J., and Park, T.G. (2010). Gene silencing efficiency of siRNA-PEG conjugates: effect of PEGylation site and PEG molecular weight. J. Control. Release 144, 306–313.PubMedCrossRefGoogle Scholar
  41. Kang, H., DeLong, R., Fisher, M.H., and Juliano, R.L. (2005). Tatconjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm. Res. 22, 2099–2106.PubMedCrossRefGoogle Scholar
  42. Kataoka, K., Harada, A., and Nagasaki, Y. (2001). Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Del. Rev. 47, 113–131.CrossRefGoogle Scholar
  43. Kim, H.K., and Park, T. G. (2002). Surface stabilization of diblock PEG-PLGA micelles by polymerization of N-vinyl-2-pyrrolidone. Macromol. Rapid Commun. 23, 26–31.CrossRefGoogle Scholar
  44. Kim, S.H., Jeong, J.H., Lee, S.H., Kim, S.W., and Park, T.G. (2006a). PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J. Control. Release 116, 123–129.PubMedCrossRefGoogle Scholar
  45. Kim, S.H., Mok, H., Jeong, J.H., Kim, S.W., and Park, T.G. (2006b). Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. Bioconjugate Chem. 17, 241–244.CrossRefGoogle Scholar
  46. Kim, S.H., Jeong, J.H., Lee, S.H., Kim, S.W., and Park, T.G. (2008a). Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release 129, 107–116.PubMedCrossRefGoogle Scholar
  47. Kim, J., Lee, J.E., Lee, S.H., Yu, J.H., Lee, J.H., Park, T.G., and Hyeon, T. (2008b). Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv. Mater. 20, 478–483.CrossRefGoogle Scholar
  48. Klibanov, A.L., Maruyama, K., Beckerleg, A.M., Torchilin, V.P., and Huang, L. (1991). Activity of amphipathic PEG 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavourable for immunoliposome binding to target. Biochem. Biophys. Acta 1062, 142–148.PubMedCrossRefGoogle Scholar
  49. Kohandel, M., Kardar, M., Milosevic, M., and Sivaloganathan, S. (2007). Dynamics of tumor growth and combination of antiangiogenic and cytotoxic therapies. Phys. Med. Biol. 52, 3665–3677.PubMedCrossRefGoogle Scholar
  50. Lee, H., Chung, H.J., and Park, T.G. (2007a). Perspectives on: local and sustained delivery of angiogenic growth factors. J. Bioact. Compat. Polym. 22, 89–114.CrossRefGoogle Scholar
  51. Lee, H., Mok, H., Lee, S.H., Oh, Y., and Park, T.G. (2007b). Targetspecific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J. Control. Release 119, 245–252.PubMedCrossRefGoogle Scholar
  52. Lee, H., Lee, K., and Park, T.G. (2008a). Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and anti-tumor activity. Bioconjugate Chem. 19, 1319–1325.CrossRefGoogle Scholar
  53. Lee, S.H., Choi, S.H., Kim, S.H., and Park, T.G. (2008b). Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J. Control. Release 125, 25–35.PubMedCrossRefGoogle Scholar
  54. Lee, Y., Lee, H., Kim, Y.B., Kim, J., Hyeon, T., Park, H., Messersmith, P.B., and Park, T.G. (2008c). Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv. Mater. 20, 1–4.CrossRefGoogle Scholar
  55. Lee, A.L.Z., Wang, Y., Cheng, H.Y., Pervaiz, S., and Yang, Y.Y. (2009a). The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials 30, 919–927.PubMedCrossRefGoogle Scholar
  56. Lee, J., Lee, K., Moon, S.H., Lee, Y., Park, T.G., and Cheon, J. (2009b). All-in-one target cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl. 48, 4174–4179.PubMedCrossRefGoogle Scholar
  57. Lee, S., Huh, M.S., Lee, S., Lee, S.J., Chung, H., Park, J.H., Oh, Y., Choi, K., Kim, K., and Kwon, I.C. (2010). Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J. Control. Release 141, 3339–3346.CrossRefGoogle Scholar
  58. Maeda, H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjugate Chem. 21, 797–802.CrossRefGoogle Scholar
  59. Mao, S., Neu, M., Germershaus, O., Merkel, O., Sitterberg, J., Bakowsky, U., and Kissel, T. (2006). Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylenimine)-graft-poly(ethylene glycol) block copolymer/ siRNA polyplexes. Bioconjugate Chem. 17, 1209–1218.CrossRefGoogle Scholar
  60. Matsumura, Y., and Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392.PubMedGoogle Scholar
  61. McCarthy, J.R., and Weissleder, R. (2008). Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251.PubMedCrossRefGoogle Scholar
  62. Meister, G., and Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 43, 343–349.CrossRefGoogle Scholar
  63. Meyer, M., Philipp, A., Oskuee, R., Schmidt, C., and Wagner, E. (2008). Breathing life into polycations: functionalization with pHresponsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J. Am. Chem. Soc. 130, 3272–3273.PubMedCrossRefGoogle Scholar
  64. Miao, G., Lu, Q., and Zhang, X. (2007). Downregulation of survivin by RNAi inhibits growth of human gastric carcinoma cells. World J. Gastroenterol. 13, 1170–1174.PubMedGoogle Scholar
  65. Mok, H., and Park, T.G. (2008). Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers 89, 881–888.PubMedCrossRefGoogle Scholar
  66. Mok, H., Bae, K.H., Ahn, C.H., and Park, T.G. (2009). PEGylated and MMP-2 specifically dePEGylated quantum dots: comparative evaluation of cellular uptake. Langmuir 25, 1645–1650.PubMedCrossRefGoogle Scholar
  67. Mok, H., Lee, S.H., Park, J.W., and Park, T.G. (2010). Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat. Mater. 9, 272–278.PubMedGoogle Scholar
  68. Montet, X., Funovics, M., Montet-Abou, K., Weissleder, R., and Josephson, L. (2006). Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49, 6087–6093.PubMedCrossRefGoogle Scholar
  69. Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R.K., and McDonald, D.M. (2002). Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160, 985–1000.PubMedCrossRefGoogle Scholar
  70. Nie, S., Xing, Y., Kim, G.J., and Simons, J.W. (2007). Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288.PubMedCrossRefGoogle Scholar
  71. Oh, Y., and Park, T.G. (2009). siRNA delivery systems for cancer treatment. Adv. Drug Del. Rev. 61, 850–862.CrossRefGoogle Scholar
  72. Park, J., An, K., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., and Hyeon, T. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895.PubMedCrossRefGoogle Scholar
  73. Park, J., Lee, E., Hwang, N.M., Kang, M., Kim, S.C., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., et al. (2005). Onenanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. Engl. 44, 2872–2877.CrossRefGoogle Scholar
  74. Park, T.G., Jeong, J.H., and Kim, S.W. (2006). Current status of polymeric gene delivery systems. Adv. Drug Del. Rev. 58, 467–486.CrossRefGoogle Scholar
  75. Park, J.H., von Maltzahn, G., Xu, M.J., Fogal, V., Kotamraju, V.R., Ruoslahti, E., Bhatia, S.N., and Sailor, M.J. (2009). Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. USA 107, 981–986.PubMedCrossRefGoogle Scholar
  76. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., and Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760.PubMedCrossRefGoogle Scholar
  77. Potter, R.F., and Groom, A.C. (1983). Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res. 25, 68–84.PubMedCrossRefGoogle Scholar
  78. Ran, S., Downes, A., and Thorpe, P.E. (2002). Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 62, 6132–6140.PubMedGoogle Scholar
  79. Reischl, D., and Zimmer, A. (2009). Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5, 8–20.PubMedGoogle Scholar
  80. Rivera Gil, P., Hühn, D., del Mercato, L.L., Sasse, D., and Parak, W.J. (2010). Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res. 62, 115–125.PubMedCrossRefGoogle Scholar
  81. Roberts, W.G., and Palade, G.E. (1995). Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108, 2369–2379.PubMedGoogle Scholar
  82. Ruoslahti, E. (2002). Specialization of tumour vasculature. Nat. Rev. Cancer 2, 83–90.PubMedCrossRefGoogle Scholar
  83. Salvador-Morales, C., Gao, W., Ghatalia, P., Murshed, F., Aizu, W., Langer, R., and Farokhzad, O.C. (2009). Multifunctional nanoparticles for prostate cancer therapy. Exp. Rev. Anticancer Ther. 9, 211–221.CrossRefGoogle Scholar
  84. Schroeder, A., Levins, C.G., Cortez, C., Langer, R., and Anderson, D.G. (2009). Lipid-based nanotherapeutics for siRNA delivery. J. Int. Med. 267, 9–21.CrossRefGoogle Scholar
  85. Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., and Dvorak, H.F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985.PubMedCrossRefGoogle Scholar
  86. Spencer, C.M., and Faulds, D. (1994). Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48, 794–847.PubMedCrossRefGoogle Scholar
  87. Tang, A., Kopečková, P., and Kopeček, J. (2003). Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes. Pharm. Res. 20, 360–367.PubMedCrossRefGoogle Scholar
  88. Torchilin, V.P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160.PubMedCrossRefGoogle Scholar
  89. Wagner, V., Dullaart, A., Bock, A.K., and Zweck, A. (2006). The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217.PubMedCrossRefGoogle Scholar
  90. Whitehead, K.A., Langer, R., and Anderson, D.G. (2009). Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Disc. 8, 129–138.CrossRefGoogle Scholar
  91. Yezhelyev, M.V., Qi, L., O’Regan, R.M., Nie, S., and Gao, X. (2008). Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc. 130, 9006–9012.PubMedCrossRefGoogle Scholar
  92. Yi, S.W., Kim, Y.H., Kwon, I.C., Chung, J.W., Park, J.H., Choi, Y.W., and Jeong, S.Y. (1998). Stable lipiodolized emulsions for hepatoma targeting and treatment by transcatheter arterial chemoembolization. J. Control. Release 50, 135–143.PubMedCrossRefGoogle Scholar
  93. Yoo, H.S., Lee, K.H., Oh, J.E., and Park, T.G. (2000). In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68, 419–431.PubMedCrossRefGoogle Scholar
  94. Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P., and Jain, R.K. (1995). Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756.PubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Ki Hyun Bae
    • 1
  • Hyun Jung Chung
    • 1
  • Tae Gwan Park
    • 1
  1. 1.Department of Biological Sciences and Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations