Molecules and Cells

, Volume 31, Issue 3, pp 255–259 | Cite as

The S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase 2 is reduced by interaction with glutathione peroxidase 3 in Saccharomyces cerevisiae

  • Phil Young Lee
  • Kwang-Hee Bae
  • Dae Gwin Jeong
  • Seung-Wook Chi
  • Jeong Hee Moon
  • Seongman Kang
  • Sayeon Cho
  • Sang Chul Lee
  • Byoung Chul Park
  • Sung Goo Park
Article

Abstract

Glutathione peroxidases (Gpxs) are the key anti-oxidant enzymes found in Saccharomyces cerevisiae. Among the three Gpx isoforms, glutathione peroxidase 3 (Gpx3) is ubiquitously expressed and modulates the activities of redox-sensitive thiol proteins involved in various biological reactions. By using a proteomic approach, glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2; EC 1.2.1.12) was found as a candidate protein for interaction with Gpx3. GAPDH, a key enzyme in glycolysis, is a multi-functional protein with multiple intracellular localizations and diverse activities. To validate the interaction between Gpx3 and GAPDH2, immunoprecipitation and a pull-down assay were carried out. The results clearly showed that GAPDH2 interacts with Gpx3 through its carboxyl-terminal domain both in vitro and in vivo. Additionally, Gpx3 helps to reduce the S-nitrosylation of GAPDH upon nitric oxide (NO) stress; this subsequently increases cellular viability. On the basis of our findings, we suggest that Gpx3 protects GAPDH from NO stress and thereby contributes to the maintenance of homeostasis during exposure to NO stress.

Keywords

Apoptosis GAPDH glutathione peroxidase 3 Nitosylation NO stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abat, J.K., Saigal, P., and Deswal, R. (2008). S-nitrosylation — another biological switch like phosphorylation. Physiol. Mol. Biol. Plants 14, 119–130.CrossRefGoogle Scholar
  2. Chuang, D.M., Hough, C., and Senatorov, V.V. (2005). Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 45, 269–290.PubMedCrossRefGoogle Scholar
  3. Delaunay, A., Pflieger, D., Barrault, M.B., Vihn, J., and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111, 471–481.PubMedCrossRefGoogle Scholar
  4. Delledonne, M. (2005). NO news is good news for plants. Curr. Opin. Plant Biol. 8, 390–396.PubMedCrossRefGoogle Scholar
  5. Derakhshan, B., Wille, P.C., and Gross, S.S. (2007). Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat. Prot. 2, 1685–1691.CrossRefGoogle Scholar
  6. Hara, M.R., Agrawal, N., Kim, S.F., Cascio, M.B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J.H., Tankou, S.K., Hester, L.D., et al. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7, 665–674.PubMedCrossRefGoogle Scholar
  7. Hara, MR., Cascio, M.R., and Sawa, A. (2006). GAPDH as a sensor of NO stress. Biochim. Biophys. Acta 1762, 502–509.PubMedGoogle Scholar
  8. Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., and Stamler, J.S. (2005). Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166.PubMedCrossRefGoogle Scholar
  9. Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84, 9265–9269.PubMedCrossRefGoogle Scholar
  10. Ikemoto, A., Bole, D.G., and Ueda, T. (2003). Glycolysis and glutamate accumulation into synaptic vesicles. J. Biol. Chem. 278, 5929–5940.PubMedCrossRefGoogle Scholar
  11. Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, I., and Kimura, A. (1999). Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274, 27002–27009.PubMedCrossRefGoogle Scholar
  12. Kho, C.W., Lee, P.Y., Bae, K.-H., Cho, S., Lee, Z.W., Park, B.C., Kang, S., Lee, D.H., and Park, S.G. (2006). Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348, 25–35.PubMedCrossRefGoogle Scholar
  13. Lee, P.Y., Bae, K.-H., Kho, C.W., Kang, S., Lee, D.H., Cho, S., Kang, S., Lee, S.C., Park, B.C., and Park, S.G. (2008). Interactome analysis of yeast glutathione peroxidase 3. J. Microbiol. Biotechnol. 18, 1364–1367.PubMedGoogle Scholar
  14. Lee, H., Chi, S.-W., Lee, P.Y., Kang, S., Cho, S., Lee, C.-K., Bae, K.-H., Park, B.C., and Park, S.G. (2009). Reduced formation of advanced glycation endproducts via interactions between glutathione peroxidase 3 and dihydroxyacetone kinase 1. Biochem. Biophys. Res. Commun. 389, 178–180.Google Scholar
  15. Meyer-Sieglar, K., Mauro, D.J., Seal, G., Wurzer, J., Deriel, J.K., and Sirover, M.A. (1991). A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 88, 8460–8464.CrossRefGoogle Scholar
  16. Michael, A.S. (1999). New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432, 159–184.CrossRefGoogle Scholar
  17. Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064.PubMedGoogle Scholar
  18. Nilkantha, S., Hara, M.R., Kornberg, M.D., Cascio, M.B., Bae, B.I., Shahani, N., Thomas, B., Dawson, T.D., Dawson, V.L., Snyder, S.H., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873.CrossRefGoogle Scholar
  19. Sies, H., and Cadenas, E. (1985). Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 311, 617–631.PubMedCrossRefGoogle Scholar
  20. Singh, R., and Green, M.R. (1993). Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259, 365–368.PubMedCrossRefGoogle Scholar
  21. Soriano, F.X., Baxter, P., Murray, L.M., Sporn, M.B., Gillingwater, T.H., and Hardingham, G.E. (2009). Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol. Cells 27, 279–282.PubMedCrossRefGoogle Scholar
  22. Stamler, J.S., Lamas, S., and Fang, F.C. (2001). Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106, 675–683.PubMedCrossRefGoogle Scholar
  23. Tisdale, E.J. (2001). Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J. Biol. Chem. 276, 2480–2486.PubMedCrossRefGoogle Scholar
  24. Yoon, S.O., Yun, C.H., and Chung, A.S. (2002). Dose effect of oxidative stress on signal transduction in aging. Mech. Aging Dev. 123, 1597–1604.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Phil Young Lee
    • 1
    • 2
  • Kwang-Hee Bae
    • 1
  • Dae Gwin Jeong
    • 1
  • Seung-Wook Chi
    • 1
  • Jeong Hee Moon
    • 1
  • Seongman Kang
    • 2
  • Sayeon Cho
    • 3
  • Sang Chul Lee
    • 1
  • Byoung Chul Park
    • 1
  • Sung Goo Park
    • 1
  1. 1.Medical Proteomics Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  2. 2.School of BiotechnologyKorea UniversitySeoulKorea
  3. 3.College of PharmacyChung-Ang UniversitySeoulKorea

Personalised recommendations