Molecules and Cells

, Volume 31, Issue 2, pp 175–180 | Cite as

State-dependent disruption of short-term facilitation due to overexpression of the apPDE4 supershort form in Aplysia

  • Deok-Jin Jang
  • Jin-A Lee
  • Yeon-Su Chae
  • Bong-Kiun Kaang


Phosphodiesterases (PDEs) play important roles in synaptic plasticity by regulating cAMP signaling in various organisms. The supershort, short, and long forms of Aplysia PDE4 (apPDE4) have been cloned, and the long form has been shown to play a crucial role in 5- hydroxytryptamine (5-HT)-induced synaptic plasticity in Aplysia. To address the role of the supershort form in 5-HT-induced synaptic plasticity in Aplysia, we overexpressed the apPDE4 supershort form in Aplysia sensory neurons. Consequently, 5-HT-induced hyperexcitability and short-term facilitation in nondepressed synapses were blocked. However, the supershort form did not inhibit 5-HT-induced short-term facilitation in highly depressed synapses. These results show that the supershort form plays an important role in 5-HT-induced synaptic plasticity and disrupts it mainly by impairing cAMP signaling in Aplysia.


Aplysia depressed synapse PDE4 supershort form synaptic facilitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alshuaib, W.B., and Mathew, M.V. (2002). Reduced delayed-rectifier K+ current in the learning mutant rutabaga. Learn. Mem. 9, 368–375.PubMedCrossRefGoogle Scholar
  2. Berke, B., and Wu, C.F. (2002). Regional calcium regulation within cultured Drosophila neurons: effects of altered cAMP metabolism by the learning mutations dunce and rutabaga. J. Neurosci. 22, 4437–4447.PubMedGoogle Scholar
  3. Braha, O., Dale, N., Hochner, B., Klein, M., Abrams, T.W., and Kandel, E.R. (1990). Second messengers involved in the two processes of presynaptic facilitation that contribute to sensitization and dishabituation in Aplysia sensory neurons. Proc. Natl. Acad. Sci. USA 87, 2040–2044.PubMedCrossRefGoogle Scholar
  4. Brunelli, M., Castellucci, V., and Kandel, E.R. (1976). Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194, 1178–1181.PubMedCrossRefGoogle Scholar
  5. Byers, D., Davis, R.L., and Kiger, J.A., Jr. (1981). Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 79–81.PubMedCrossRefGoogle Scholar
  6. Byrne, J.H., and Kandel, E.R. (1996). Presynaptic facilitation revisited: state and time dependence. J. Neurosci. 16, 425–435.PubMedGoogle Scholar
  7. Chang, D.J., Li, X.C., Lee, Y.S., Kim, H.K., Kim, U.S., Cho, N.J., Lo, X., Weiss, K.R., Kandel, E.R., and Kaang, B.K. (2000). Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in aplysia sensory neurons. Proc. Natl. Acad. Sci. USA 97, 1829–1834.PubMedCrossRefGoogle Scholar
  8. Cheung, Y.F., Kan, Z., Garrett-Engele, P., Gall, I., Murdoch, H., Baillie, G.S., Camargo, L.M., Johnson, J.M., Houslay, M.D., and Castle, J.C. (2007). PDE4B5, a novel, super-short, brain-specific cAMP phosphodiesterase-4 variant whose isoform-specifying Nterminal region is identical to that of cAMP phosphodiesterase-4D6 (PDE4D6). J. Pharmacol. Exp. Ther. 322, 600–609.PubMedCrossRefGoogle Scholar
  9. Conti, M., and Beavo, J. (2007). Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76, 481–511.PubMedCrossRefGoogle Scholar
  10. Dudai, Y., Jan, Y.N., Byers, D., Quinn, W.G., and Benzer, S. (1976). Dunce, a mutant of Drosophila deficient in learning. Proc. Natl. Acad. Sci. USA 73, 1684–1688.PubMedCrossRefGoogle Scholar
  11. Ghirardi, M., Braha, O., Hochner, B., Montarolo, P.G., Kandel, E.R., and Dale, N. (1992). Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 9, 479–489.PubMedCrossRefGoogle Scholar
  12. Houslay, M.D., Baillie, G.S., and Maurice, D.H. (2007). cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ. Res. 100, 950–966.PubMedCrossRefGoogle Scholar
  13. Huston, E., Gall, I., Houslay, T.M., and Houslay, M.D. (2006). Helix-1 of the cAMP-specific phosphodiesterase PDE4A1 regulates its phospholipase-D-dependent redistribution in response to release of Ca2+. J. Cell Sci. 119, 3799–3810.PubMedCrossRefGoogle Scholar
  14. Jang, D.J., Park, S.W., Lee, J.A., Lee, C., Chae, Y.S., Park, H., Kim, M.J., Choi, S.L., Lee, N., Kim, H., et al. (2010). N termini of apPDE4 isoforms are responsible for targeting the isoforms to different cellular membranes. Learn. Mem. 17, 469–479.PubMedCrossRefGoogle Scholar
  15. Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.PubMedCrossRefGoogle Scholar
  16. Khoutorsky, A., and Spira, M.E. (2005). Calcium-activated proteases are critical for refilling depleted vesicle stores in cultured sensory-motor synapses of Aplysia. Learn. Mem. 12, 414–422.PubMedCrossRefGoogle Scholar
  17. Lee, J.A., Kim, H.K., Kim, K.H., Han, J.H., Lee, Y.S., Lim, C.S., Chang, D.J., Kubo, T., and Kaang, B.K. (2001). Overexpression of and RNA interference with the CCAAT enhancer-binding protein on long-term facilitation of Aplysia sensory to motor synapses. Learn. Mem. 8, 220–226.PubMedCrossRefGoogle Scholar
  18. Lee, Y.S., Bailey, C.H., Kandel, E.R., and Kaang, B.K. (2008). Transcriptional regulation of long-term memory in the marine snail Aplysia. Mol. Brain 1, 3.PubMedCrossRefGoogle Scholar
  19. Manseau, F., Fan, X., Hueftlein, T., Sossin, W., and Castellucci, V.F. (2001). Ca2+-independent protein kinase C Apl II mediates the serotonin-induced facilitation at depressed aplysia sensorimotor synapses. J. Neurosci. 21, 1247–1256.PubMedGoogle Scholar
  20. Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R., and Schacher, S. (1986). A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234, 1249–1254.PubMedCrossRefGoogle Scholar
  21. Muller, U., and Carew, T.J. (1998). Serotonin induces temporally and mechanistically distinct phases of persistent PKA activity in Aplysia sensory neurons. Neuron 21, 1423–1434.PubMedCrossRefGoogle Scholar
  22. Nakanishi, K., Zhang, F., Baxter, D.A., Eskin, A., and Byrne, J.H. (1997). Role of calcium-calmodulin-dependent protein kinase II in modulation of sensorimotor synapses in Aplysia. J. Neuro physiol. 78, 409–416.Google Scholar
  23. Park, H., Lee, J.A., Lee, C., Kim, M.J., Chang, D.J., Kim, H., Lee, S.H., Lee, Y.S., and Kaang, B.K. (2005). An Aplysia type 4 phosphodiesterase homolog localizes at the presynaptic terminals of Aplysia neuron and regulates synaptic facilitation. J. Neurosci. 25, 9037–9045.PubMedCrossRefGoogle Scholar
  24. Shakur, Y., Pryde, J.G., and Houslay, M.D. (1993). Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering its sensitivity to inhibition by rolipram. Biochem. J. 292, 677–686.PubMedGoogle Scholar
  25. Shuster, M.J., Camardo, J.S., Siegelbaum, S.A., and Kandel, E.R. (1985). Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cellfree membrane patches. Nature 313, 392–395.PubMedCrossRefGoogle Scholar
  26. Siegelbaum, S.A., Camardo, J.S., and Kandel, E.R. (1982). Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299, 413–417.PubMedCrossRefGoogle Scholar
  27. Wang, D., Deng, C., Bugaj-Gaweda, B., Kwan, M., Gunwaldsen, C., Leonard, C., Xin, X., Hu, Y., Unterbeck, A., and De Vivo, M. (2003). Cloning and characterization of novel PDE4D isoforms PDE4D6 and PDE4D7. Cell. Signal. 15, 883–891.PubMedCrossRefGoogle Scholar
  28. Zhao, Y., and Klein, M. (2002). Modulation of the readily releasable pool of transmitter and of excitation-secretion coupling by activity and by serotonin at Aplysia sensorimotor synapses in culture. J. Neurosci. 22, 10671–10679.PubMedGoogle Scholar
  29. Zhao, Y., and Klein, M. (2004). Changes in the readily releasable pool of transmitter and in efficacy of release induced by high-frequency firing at Aplysia sensorimotor synapses in culture. J. Neurophysiol. 91, 1500–1509.PubMedCrossRefGoogle Scholar
  30. Zhao, Y., Leal, K., Abi-Farah, C., Martin, K.C., Sossin, W.S., and Klein, M. (2006). Isoform specificity of PKC translocation in living Aplysia sensory neurons and a role for Ca2+-dependent PKC APL I in the induction of intermediate-term facilitation. J. Neurosci. 26, 8847–8856.PubMedCrossRefGoogle Scholar
  31. Zhong, Y., and Wu, C.F. (1991). Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251, 198–201.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Deok-Jin Jang
    • 1
  • Jin-A Lee
    • 2
  • Yeon-Su Chae
    • 1
  • Bong-Kiun Kaang
    • 1
    • 3
  1. 1.National Creative Research Initiative Center for Memory, Departments of Biological Sciences, College of Natural SciencesSeoul National UniversitySeoulKorea
  2. 2.Department of Biotechnology, College of Life Science and Nano TechnologyHannam UniversityDaejeonKorea
  3. 3.Brain and Cognitive Sciences, College of Natural SciencesSeoul National UniversitySeoulKorea

Personalised recommendations