Molecules and Cells

, Volume 30, Issue 6, pp 507–512 | Cite as

DNA barcode-based molecular identification system for fish species

  • Sungmin Kim
  • Hae-Seok Eo
  • Hyeyoung Koo
  • Jun-Kil Choi
  • Won KimEmail author


In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at


DNA barcoding fish hidden Markov model molecular identification system for fish (MISF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austerlitz, F., David, O., Schaeffer, B., Bleakley, K., Olteanu, M., Leblois, R., Veuille, M., and Laredo, C. (2009). DNA barcode analysis: a comparison of phylogenetic and statistical classification methods. BMC Bioinformatics 10, S10.CrossRefPubMedGoogle Scholar
  2. Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  3. Baker, A., Tavares, E., and Elbourne, R. (2009). Countering criticisms of single mitochondrial DNA gene barcoding in birds. Mol. Ecol. Res. 9, 257–268.CrossRefGoogle Scholar
  4. Baldi, P., and Brunak, S. (2001). Bioinformatics: The Machine Learning Approach. The MIT Press.Google Scholar
  5. Bensasson, D., Zhang, D., Hartl, D., and Hewitt, G. (2001). Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol. Evol. 16, 314–321.CrossRefPubMedGoogle Scholar
  6. Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.CrossRefGoogle Scholar
  7. Eddy, S. (1998). Profile hidden Markov models. Bioinformatics 14, 755–763.CrossRefPubMedGoogle Scholar
  8. Eddy, S. (2008). HMMER user’s guide. Department of Genetics, Washington University School of Medicine 2.Google Scholar
  9. Edgar, R. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.CrossRefPubMedGoogle Scholar
  10. Ekrem, T., Willassen, E., and Stur, E. (2007). A comprehensive DNA sequence library is essential for identification with DNA barcodes. Mol. Phylogenet. Evol. 43, 530–542.CrossRefPubMedGoogle Scholar
  11. Eo, H., Kim, S., Koo, H., and Kim, W. (2009). A machine learning based method for the prediction of G protein-coupled receptor-binding PDZ domain proteins. Mol. Cells 27, 629–634.CrossRefPubMedGoogle Scholar
  12. Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotech. 3, 294–299.Google Scholar
  13. France, S., and Hoover, L. (2002). DNA sequences of the mitochondrial COI gene have low levels of divergence among deepsea octocorals (Cnidaria: Anthozoa). Hydrobiologia 471, 149–155.CrossRefGoogle Scholar
  14. Hajibabaei, M., Janzen, D., Burns, J., Hallwachs, W., and Hebert, P. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. USA 103, 968–971.CrossRefPubMedGoogle Scholar
  15. Hebert, P., and Gregory, T. (2005). The promise of DNA barcoding for taxonomy. Systematic Biol. 54, 852–859.CrossRefGoogle Scholar
  16. Hebert, P., Ratnasingham, S., and deWaard, J. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Royal Soc. London-B 270, 96–99.CrossRefGoogle Scholar
  17. Hebert, P., Stoeckle, M., Zemlak, T., and Francis, C. (2004). Identification of birds through DNA barcodes. PLoS Biol. 2, 1657–1663.CrossRefGoogle Scholar
  18. Hubert, N., Hanner, R., Holm, E., Mandrak, N., Taylor, E., Burridge, M., Watkinson, D., Dumont, P., Curry, A., and Bentzen, P. (2008). Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3, e2490.CrossRefGoogle Scholar
  19. Ihaka, R., and Gentleman, R. (1996). R: A language for data analysis and graphics. J. Comput. Graph. Statistics 5, 299–314.CrossRefGoogle Scholar
  20. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefPubMedGoogle Scholar
  21. Lefebure, T., Douady, C., Gouy, M., and Gibert, J. (2006). Relation ship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 40, 435–447.CrossRefPubMedGoogle Scholar
  22. Meyer, C., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 3, e422.CrossRefPubMedGoogle Scholar
  23. Nielsen, R., and Matz, M. (2006). Statistical approaches for DNA barcoding. Systematic Biol. 55, 162–169.CrossRefGoogle Scholar
  24. Rach, J., DeSalle, R., Sarkar, I., Schierwater, B., and Hadrys, H. (2008). Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc. Royal Soc. B 275, 237–247.CrossRefGoogle Scholar
  25. Ratnasingham, S., and Hebert, P. (2007). BOLD: the Barcode of Life Data System ( Mol. Ecol. Notes 7, 355–364.CrossRefPubMedGoogle Scholar
  26. Rock, J., Costa, F., Walker, D., North, A., Hutchinson, W., and Carvalho, G. (2008). DNA barcodes of fish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematics focus. Antarctic Sci. 20, 253–262.CrossRefGoogle Scholar
  27. Schindel, D., and Miller, S. (2005). DNA barcoding a useful tool for taxonomists. Nature 17, 435.Google Scholar
  28. Song, H., Buhay, J., Whiting, M., and Crandall, K. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491.CrossRefPubMedGoogle Scholar
  29. Stahls, G., Vujic, A., Perez-banon, C., Radenkovic, S., Rojo, S., and Petanidou, T. (2009). COI barcodes for identification of Merodon hoverflies (Diptera, Syrphidae) of Lesvos Island, Greece. Mol. Ecol. Res. 9, 1431–1438.Google Scholar
  30. Steinke, D., Vences, M., Salzburger, W., and Meyer, A. (2005). TaxI: a software tool for DNA barcoding using distance methods. Philos. Transact. B 360, 1975–1980.CrossRefGoogle Scholar
  31. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.CrossRefPubMedGoogle Scholar
  32. Tautz, D., Arctander, P., Minelli, A., Thomas, R., and Vogler, A. (2002). DNA points the way ahead in taxonomy. Nature 418, 479–479.CrossRefPubMedGoogle Scholar
  33. Tavares, E., and Baker, A. (2008) Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol. Biol. 8, 81.CrossRefPubMedGoogle Scholar
  34. Ward, R., Hanner, R., and Hebert, P. (2009). The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356.CrossRefPubMedGoogle Scholar
  35. Waugh, J. (2007). DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29, 188–197.CrossRefPubMedGoogle Scholar
  36. Woese, C., and Fox, G. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Sungmin Kim
    • 1
  • Hae-Seok Eo
    • 2
  • Hyeyoung Koo
    • 3
  • Jun-Kil Choi
    • 3
  • Won Kim
    • 1
    • 4
    Email author
  1. 1.Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulKorea
  2. 2.Information & Technology LaboratoryLG Electronics Inc.SeoulKorea
  3. 3.Department of Biological ScienceSangji UniversityWonjuKorea
  4. 4.School of Biological SciencesSeoul National UniversitySeoulKorea

Personalised recommendations