Molecules and Cells

, Volume 30, Issue 6, pp 513–518 | Cite as

Mechanical stretch activates signaling events for protein translation initiation and elongation in C2C12 myoblasts

  • Naoya Nakai
  • Fuminori Kawano
  • Yoshihiko Oke
  • Sachiko Nomura
  • Takashi Ohira
  • Ryo Fujita
  • Yoshinobu Ohira
Article

Abstract

It has been proposed that mechanically induced tension is the critical factor in the induction of muscle hypertrophy. However, the molecular mechanisms involved in this process are still under investigation. In the present study, the effect of mechanical stretch on intracellular signaling for protein translation initiation and elongation was studied in C2C12 myoblasts. Cells were grown on a silicone elastomer chamber and subjected to 30-min of 5 or 15% constant static or cyclic (60 cycles/min) uniaxial stretch. Western blot analyses revealed that p70 S6 kinase (p70S6K) and eukaryotic elongation factor 2 (eEF2), which are the markers for translation initiation and peptide chain elongation, respectively, were activated by both static and cyclic stretch. The magnitude of activation was greater in response to the 15% cyclic stretch. Cyclic stretch also increased the phosphorylation of MAP kinases (p38 MAPK, ERK1/2 and JNK). However, the pharmacological inhibition of MAP kinases did not block the stretch-induced activation of p70S6K and eEF2. An inhibitor of the mammalian target of rapamycin (mTOR) blocked the stretch-induced phosphorylation of p70S6K but did not affect the eEF2 activation. A broad-range tyrosine kinase inhibitor, genistein, blocked the stretch-induced activation of p70S6K and eEF2, whereas Src tyrosine kinase and Janus kinase (JAK) inhibitors did not. These results suggest that the stretch-induced activation of protein translation initiation and elongation in mouse myoblast cell lines is mediated by tyrosine kinase(s), except for Src kinase or JAK.

Keywords

C2C12 myoblasts eukaryotic elongation factor 2 mechanical stretch p70 S6 kinase tyrosine phosphorylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, L.D., Alagarsamy, S., and Douglas, J.G. (2004). Cyclic stretch-induced cPLA2 mediates ERK 1/2 signaling in rabbit proximal tubule cells. Kidney Int. 65, 551–563.CrossRefPubMedGoogle Scholar
  2. Atherton, P.J., Szewczyk, N.J., Selby, A., Rankin, D., Hillier, K., Smith, K., Rennie, M.J., and Loughna, P.T. (2009). Cyclic stretch reduces myofibrillar protein synthesis despite increases in FAK and anabolic signalling in L6 cells. J. Physiol. 587, 3719–3727.CrossRefPubMedGoogle Scholar
  3. Barnett, J.G., Holly, R.G., and Ashmore, C.R. (1980). Stretchinduced growth in chicken wing muscles: biochemical and morphological characterization. Am. J. Physiol. 239, C39–46.PubMedGoogle Scholar
  4. Bodine, S.C., Stitt, T.N., Gonzalez, M., Kline, W.O., Stover, G.L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J.C., Glass, D.J., et al. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3, 1014–1019.CrossRefPubMedGoogle Scholar
  5. Crosara-Alberto, D.P., Inoue, R.Y., and Costa, C.R. (2009). FAK signalling mediates NF-kappaB activation by mechanical stress in cardiac myocytes. Clin. Chim. Acta 403, 81–86.CrossRefPubMedGoogle Scholar
  6. Dennis, P.B., Pullen, N., Kozma, S.C., and Thomas, G. (1996). The principal rapamycin-sensitive p70s6k phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol. Cell Biol. 16, 6242–6251.PubMedGoogle Scholar
  7. Drummond, M.J., Fry, C.S., Glynn, E.L., Dreyer, H.C., Dhanani, S., Timmerman, K.L., Volpi, E., and Rasmussen, B.B. (2009). Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J. Physiol. 587, 1535–1546.CrossRefPubMedGoogle Scholar
  8. Dufner, A., and Thomas, G. (1999). Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109.CrossRefPubMedGoogle Scholar
  9. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A., and Chen, J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945.CrossRefPubMedGoogle Scholar
  10. Fang, Y., Park, I.H., Wu, A.L., Du, G., Huang, P., Frohman, M.A., Walker, S.J., Brown, H.A., and Chen, J. (2003). PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. Curr. Biol. 13, 2037–2044.CrossRefPubMedGoogle Scholar
  11. Goldberg, A.L., Etlinger, J.D., Goldspink, D.F., and Jablecki, C. (1975). Mechanism of work-induced hypertrophy of skeletal muscle. Med. Sci. Sports 7, 185–198.PubMedGoogle Scholar
  12. Hornberger, T.A., and Chien, S. (2006). Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J. Cell Biochem. 97, 1207–1216.CrossRefPubMedGoogle Scholar
  13. Hornberger, T.A., Chu, W.K., Mak, Y.W., Hsiung, J.W., Huang, S.A., and Chien, S. (2006). The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc. Natl. Acad. Sci. USA 103, 4741–4746.CrossRefPubMedGoogle Scholar
  14. Hornberger, T.A., Sukhija, K.B., Wang, X.R., and Chien, S. (2007). mTOR is the rapamycin-sensitive kinase that confers mechanically-induced phosphorylation of the hydrophobic motif site Thr(389) in p70s6k. FEBS Lett. 581, 4562–4566.CrossRefPubMedGoogle Scholar
  15. Kimball, S.R., Shantz, L.M., Horetsky, R.L., and Jefferson, L.S. (1999). Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J. Biol. Chem. 274, 11647–11652.CrossRefPubMedGoogle Scholar
  16. Marin, T.M., Clemente, C.F., Santos, A.M., Picardi, P.K., Pascoal, V.D., Lopes-Cendes, I., Saad, M.J., and Franchini, K.G. (2008). Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways. Circ. Res. 103, 813–824.CrossRefPubMedGoogle Scholar
  17. Martineau, L.C., and Gardiner, P.F. (2001). Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J. Appl. Physiol. 91, 693–702.PubMedGoogle Scholar
  18. Matoba, H., and Gollnick, P.D. (1984). Response of skeletal muscle to training. Sports Med. 1, 240–251.CrossRefPubMedGoogle Scholar
  19. Pan, J., Fukuda, K., Saito, M., Matsuzaki, J., Kodama, H., Sano, M., Takahashi, T., Kato, T., and Ogawa, S. (1999). Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ. Res. 84, 1127–1136.PubMedGoogle Scholar
  20. Pearson, R.B., Dennis, P.B., Han, J.W., Williamson, N.A., Kozma, S.C., Wettenhall, R.E., and Thomas, G. (1995). The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J. 14, 5279–5287.PubMedGoogle Scholar
  21. Redpath, N.T., Price, N.T., Severinov, K.V., and Proud, C.G. (1993). Regulation of elongation factor-2 by multisite phosphorylation. Eur. J. Biochem. 213, 689–699.CrossRefPubMedGoogle Scholar
  22. Redpath, N.T., Foulstone, E.J., and Proud, C.G. (1996). Regulation of translation elongation factor-2 by insulin via a rapamycinsensitive signalling pathway. EMBO J. 15, 2291–2297.PubMedGoogle Scholar
  23. Robinson, M.J., and Cobb, M.H. (1997). Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9, 180–186.CrossRefPubMedGoogle Scholar
  24. Rose, A.J., Alsted, T.J., Jensen, T.E., Kobbero, J.B., Maarbjerg, S.J., Jensen, J., and Richter, E.A. (2009). A Ca2+-calmodulineEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. J. Physiol. 587, 1547–1563.CrossRefPubMedGoogle Scholar
  25. Thomson, D.M., Fick, C.A., and Gordon, S.E. (2008). AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J. Appl. Physiol. 104, 625–632.CrossRefPubMedGoogle Scholar
  26. Timson, B.F. (1990). Evaluation of animal models for the study of exercise-induced muscle enlargement. J. Appl. Physiol. 69, 1935–1945.PubMedGoogle Scholar
  27. Wang, L., Wang, X., and Proud, C.G. (2000). Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. Am. J. Physiol. Heart Circ. Physiol. 278, H1056–1068.PubMedGoogle Scholar
  28. Wang, X., Li, W., Williams, M., Terada, N., Alessi, D.R., and Proud, C.G. (2001). Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J. 20, 4370–4379.CrossRefPubMedGoogle Scholar
  29. Wang, T.L., Yang, Y.H., Chang, H., and Hung, C.R. (2004). Angiotensin II signals mechanical stretch-induced cardiac matrix metalloproteinase expression via JAK-STAT pathway. J. Mol. Cell Cardiol. 37, 785–794.CrossRefPubMedGoogle Scholar
  30. Weng, Q.P., Kozlowski, M., Belham, C., Zhang, A., Comb, M.J., and Avruch, J. (1998). Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J. Biol. Chem. 273, 16621–16629.CrossRefPubMedGoogle Scholar
  31. Wu, X., Reiter, C.E., Antonetti, D.A., Kimball, S.R., Jefferson, L.S., and Gardner, T.W. (2004). Insulin promotes rat retinal neuronal cell survival in a p70S6K-dependent manner. J. Biol. Chem. 279, 9167–9175.CrossRefPubMedGoogle Scholar
  32. Zanchi, N.E., and Lancha, A.H., Jr. (2008). Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur. J. Appl. Physiol. 102, 253–263.CrossRefPubMedGoogle Scholar
  33. Zhang, S.J., Truskey, G.A., and Kraus, W.E. (2007). Effect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA. Am. J. Physiol. Cell Physiol. 292, C2057–2069.CrossRefPubMedGoogle Scholar
  34. Zheng, W., Christensen, L.P., and Tomanek, R.J. (2008). Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am. J. Physiol. Heart Circ. Physiol. 295, H794–800.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Naoya Nakai
    • 1
  • Fuminori Kawano
    • 1
  • Yoshihiko Oke
    • 1
  • Sachiko Nomura
    • 1
  • Takashi Ohira
    • 2
  • Ryo Fujita
    • 1
  • Yoshinobu Ohira
    • 1
    • 2
  1. 1.Section of Applied Physiology, Department of Health and Sports Sciences, Graduate School of MedicineOsaka UniversityOsakaJapan
  2. 2.Section of Space Physiology, Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan

Personalised recommendations