Advertisement

Molecules and Cells

, Volume 30, Issue 5, pp 467–476 | Cite as

Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea

  • Hyejung Lee
  • Woogeun Song
  • Hae-Ryun Kwak
  • Jae-deok Kim
  • Jungan Park
  • Chung-Kyoon Auh
  • Dae-Hyun Kim
  • Kyeong-yeoll Lee
  • Sukchan LeeEmail author
  • Hong-Soo ChoiEmail author
Article

Abstract

Tomato yellow leaf curl virus (TYLCV) is a member of the genus Begomovirus of the family Geminiviridae, members of which are characterized by closed circular single-stranded DNA genomes of 2.7-2.8 kb in length, and include viruses transmitted by the Bemisia tabaci whitefly. No reports of TYLCV in Korea are available prior to 2008, after which TYLCV spread rapidly to most regions of the southern Korean peninsula (Gyeongsang-Do, Jeolla-Do and Jeju-Do). Fifty full sequences of TYLCV were analyzed in this study, and the AC1, AV1, IR, and full sequences were analyzed via the muscle program and bayesian analysis. Phylogenetic analysis demonstrated that the Korea TYLCVs were divided into two subgroups. The TYLCV Korea 1 group (Masan) originated from TYLCV Japan (Miyazaki) and the TYLCV Korea 2 group (Jeju/Jeonju) from TYLCV Japan (Tosa/Haruno). A B. tabaci phylogenetic tree was constructed with 16S rRNA and mitochondria cytochrome oxidase I (MtCOI) sequences using the muscle program and MEGA 4.0 in the neighbor-joining algorithm. The sequence data of 16S rRNA revealed that Korea B. tabaci was closely aligned to B. tabaci isolated in Iran and Nigeria. The Q type of B. tabaci, which was originally identified as a viruliferous insect in 2008, was initially isolated in Korea as a non-viruliferous insect in 2005. Therefore, we suggest that two TYLCV Japan isolates were introduced to Korea via different routes, and then transmitted by native B. tabaci.

Keywords

begomovirus Bemisia tabaci phylogeny tomato TYLCV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boykin, L.M., Shatters, R.G., Jr., Rosell, R.C., McKenzie, C.L., Bagnall, R.A., De Barro, P., and Frohlich, D.R. (2007). Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol. Phylogenet. Evol. 44, 1306–1319.CrossRefPubMedGoogle Scholar
  2. Davino, S., Napoli, C., Dellacroce, C., Miozzi, L., Noris, E., Davino, M., and Accotto, G.P. (2009). Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. Virus Res. 143, 15–23.CrossRefPubMedGoogle Scholar
  3. De Barro, P.J., Driver, F., Trueman, J.W., and Curran, J. (2000). Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol. Phylogenet. Evol. 16, 29–36.CrossRefPubMedGoogle Scholar
  4. Dellaporta, S.L., Wood, J., and Hicks, J.B. (1983). A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1, 19–21.CrossRefGoogle Scholar
  5. Everett, K.D., Thao, M., Horn, M., Dyszynski, G.E., and Baumann, P. (2005). Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Microbiol. 55, 1581–1587.CrossRefPubMedGoogle Scholar
  6. Fazeli, R., Heydarnejad, J., Massumi, H., Shaabanian, M., and Varsani, A. (2009). Genetic diversity and distribution of tomato-infecting begomoviruses in Iran. Virus Genes 38, 311–319.CrossRefPubMedGoogle Scholar
  7. Ghanim, M., Morin, S., Zeidan, M., and Czosnek, H. (1998). Evidence for transovarial transmission of tomato yellow leaf curl virus by its vector, the whitefly Bemisia tabaci. Virology 240, 295–303.CrossRefPubMedGoogle Scholar
  8. Hillis, D.M., and Dixon, M.T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–453.CrossRefPubMedGoogle Scholar
  9. Hsieh, C.H., Wang, C.H., and Ko, C.C. (2007). Evidence from molecular markers and population genetic analyses suggests recent invasions of the Western North Pacific region by biotypes B and Q o f Bemisia tabaci (Gennadius). Environ. Entomol. 36, 952–961.CrossRefPubMedGoogle Scholar
  10. Idris, A.M., and Brown, J.K. (2005). Evidence for interspecificrecombination for three monopartite begomoviral genomes associated with the tomato leaf curl disease from central Sudan. Arch. Virol. 150, 1003–1012.CrossRefPubMedGoogle Scholar
  11. Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G.P., Crespi, S., and Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.CrossRefPubMedGoogle Scholar
  12. Kim, H., and Lee, S. (2008). Molecular systematics of the genus Megoura (Hemiptera: Aphididae) using mitochondrial and nuclear DNA sequences. Mol. Cells 25, 510–522.PubMedGoogle Scholar
  13. Kim, M.I., Baek, J.Y., Kim, M.J., Jeong, H.C., Kim, K.G., Bae, C.H., Han, Y.S., Jin, B.R., and Kim, I. (2009). Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol. Cells 28, 347–363.CrossRefPubMedGoogle Scholar
  14. Kumar, Y., Hallan, V., and Zaidi, A.A. (2008). Molecular characterization of a distinct bipartite begomovirus species infecting tomato in India. Virus Genes 37, 425–431.CrossRefPubMedGoogle Scholar
  15. Lee, S., Stenger, D.C., Bisaro, D.M., and Davis, K.R. (1994). Identification of loci in Arabidopsis that confer resistance to geminivirus infection. Plant J. 6, 525.CrossRefPubMedGoogle Scholar
  16. Luan, Y.S., Zhang, J., Liu, D.M., and Li, W.L. (2007). Molecular characterization of sweet potato leaf curl virus isolate from China (SPLCV-CN) and its phylogenetic relationship with other members of the Geminiviridae. Virus Genes 35, 379–385.CrossRefPubMedGoogle Scholar
  17. Matsuda, N., Sharma, P., Bajet, N.B., and Ikegami, M. (2008). Molecular characterization of a new strain of tomato leaf curl Philippines virus and its associated satellite DNAbeta molecule: further evidence for natural recombination amongst begomoviruses. Arch. Virol. 153, 961–967.CrossRefPubMedGoogle Scholar
  18. Navot, N., Pichersky, E., Zeidan, M., Zamir, D., and Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.CrossRefPubMedGoogle Scholar
  19. Ogawa, T., Sharma, P., and Ikegami, M. (2008). The begomoviruses Honeysuckle yellow vein mosaic virus and Tobacco leaf curl Japan virus with DNAbeta satellites cause yellow dwarf disease of tomato. Virus Res. 137, 235–244.CrossRefPubMedGoogle Scholar
  20. Padidam, M., Beachy, R.N., and Fauquet, C.M. (1995). Classification and identification of geminiviruses using sequence comparisons. J. Gen. Virol. 76, 249–263.CrossRefPubMedGoogle Scholar
  21. Padidam, M., Sawyer, S., and Fauquet, C.M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.CrossRefPubMedGoogle Scholar
  22. Paredes-Esquivel, C., Donnelly, M.J., Harbach, R.E., and Townson, H. (2009). A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogenet. Evol. 50, 141–151.CrossRefPubMedGoogle Scholar
  23. Revill, P.A., Ha, C.V., Porchun, S.C., Vu, M.T., and Dale, J.L. (2003). The complete nucleotide sequence of two distinct geminiviruses infecting cucurbits in Vietnam. Arch. Virol. 148, 1523–1541.CrossRefPubMedGoogle Scholar
  24. Sawangjit, S., Chatchawankanphanich, O., Chiemsombat, P., Attathom, T., Dale, J., and Attathom, S. (2005). Molecular characterization of tomato-infecting begomoviruses in Thailand. Virus Res. 109, 1–8.CrossRefPubMedGoogle Scholar
  25. Shahid, M.S., Mansoor, S., and Briddon, R.W. (2007). Complete nucleotide sequences of cotton leaf curl Rajasthan virus and its associated DNA beta molecule infecting tomato. Arch. Virol. 152, 2131–2134.CrossRefPubMedGoogle Scholar
  26. Shatters, R.G., Jr., Powell, C.A., Boykin, L.M., Liansheng, H., and McKenzie, C.L. (2009). Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. J. Econ. Entomol. 102, 750–758.CrossRefPubMedGoogle Scholar
  27. Shimizu, S., and Ikegami, M. (1999). Complete nucleotide sequence and the genome organization of tobacco leaf curl geminivirus from Japan. Microbiol. Immunol. 43, 989–992.PubMedGoogle Scholar
  28. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.CrossRefPubMedGoogle Scholar
  29. Thao, M.L., Baumann, L., Hess, J.M., Falk, B.W., Ng, J.C., Gullan, P.J., and Baumann, P. (2003). Phylogenetic evidence for two new insect-associated Chlamydia of the family Simkaniaceae. Curr. Microbiol. 47, 46–50.CrossRefPubMedGoogle Scholar
  30. Tsagkarakou, A., Tsigenopoulos, C.S., Gorman, K., Lagnel, J., and Bedford, I.D. (2007). Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bull. Entomol. Res. 97, 29–40.CrossRefPubMedGoogle Scholar
  31. Yongping, Z., Weimin, Z., Huimei, C., Yang, Q., Kun, S., Yanhui, W., Longying, Z., Li, Y., and Zhang, H. (2008). Molecular identification and the complete nucleotide sequence of TYLCV isolate from Shanghai of China. Virus Genes 36, 547–551.CrossRefPubMedGoogle Scholar
  32. Zhang, H., Gong, H., and Zhou, X. (2009). Molecular characterization and pathogenicity of tomato yellow leaf curl virus in China. Virus Genes 39, 249–255.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Hyejung Lee
    • 1
  • Woogeun Song
    • 2
  • Hae-Ryun Kwak
    • 3
  • Jae-deok Kim
    • 1
    • 3
  • Jungan Park
    • 1
  • Chung-Kyoon Auh
    • 4
  • Dae-Hyun Kim
    • 5
  • Kyeong-yeoll Lee
    • 2
  • Sukchan Lee
    • 1
    Email author
  • Hong-Soo Choi
    • 3
    Email author
  1. 1.Department of Genetic EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.School of Applied BiosciencesKyungpook National UniversityDaeguKorea
  3. 3.Agricultural Microbiology DivisionNational Academy of Agricultural ScienceSuwonKorea
  4. 4.Department of Biological SciencesMokpo National UniversityMuanKorea
  5. 5.Fruit Research DivisionNational Institute of Horticultural and Herbal ScienceSuwonKorea

Personalised recommendations