Advertisement

Molecules and Cells

, Volume 30, Issue 2, pp 93–98 | Cite as

The brain microenvironment and cancer metastasis

  • Isaiah J. FidlerEmail author
  • Krishnakumar Balasubramanian
  • Qingtang Lin
  • Seung Wook Kim
  • Sun-Jin Kim
Minireview

Abstract

The process of metastasis consists of a series of sequential, selective steps that few cells can complete. The outcome of cancer metastasis depends on multiple interactions between metastatic cells and homeostatic mechanisms that are unique to one or another organ microenvironment. The specific organ microenvironment determines the extent of cancer cell proliferation, angiogenesis, invasion and survival. Many lung cancer, breast cancer, and melanoma patients develop fatal brain metastases that do not respond to therapy. The blood-brain barrier is intact in and around brain metastases that are smaller than 0.25 mm in diameter. Although the blood-brain barrier is leaky in larger metastases, the lesions are resistant to many chemotherapeutic drugs. Activated astrocytes surround and infiltrate brain metastases. The physiological role of astrocytes is to protect against neurotoxicity. Our current data demonstrate that activated astrocytes also protect tumor cells against chemotherapeutic drugs.

Keywords

astrocytes brain metastasis organ microenvironment seed and soil hypothesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, N.J., Rönnbäck, L., and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53.CrossRefPubMedGoogle Scholar
  2. Allen, N.J., and Barres, B.A. (2009). Neuroscience: glia - more than just brain glue. Nature 457, 675–677.CrossRefPubMedGoogle Scholar
  3. Aukerman, S.L., Price, J.E., and Fidler, I.J. (1986). Different deficiencies in the prevention of tumorigenic-low-metastatic murine K-1735 melanoma cells from producing metastasis. J. Natl. Cancer Inst. 77, 915–924.PubMedGoogle Scholar
  4. Brown, J.M., and Giaccia, A.J. (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416.PubMedGoogle Scholar
  5. Bullock, T.H., Bennett, M.V., Johnston, D., Josephson, R., Marder, E., and Fields, R.D. (2005). Neuroscience. The neuron doctrine, redux. Science 310, 791–793.CrossRefPubMedGoogle Scholar
  6. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gerstenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.CrossRefPubMedGoogle Scholar
  7. Carmeliet, P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.CrossRefPubMedGoogle Scholar
  8. Chalkley, H.W. (1943). Method for the quantitative morphologic analysis of tissues. J. Natl. Cancer Inst. 4, 47–53.Google Scholar
  9. Chen, L.W., Yung, K.L., and Chan, Y.S. (2005). Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson’s disease. Curr. Drug Targets 6, 821–833.CrossRefPubMedGoogle Scholar
  10. Crooks, D.A., Scholtz, C.L., Vowles, G., Greenwald, S., and Evans, S. (1991). The glial reaction in closed head injuries. Neuropathol. Appl. Neurobiol. 17, 407–414.CrossRefPubMedGoogle Scholar
  11. Ewing, J. (1928). Neoplastic Diseases, 6th eds., W. B. Saunders, (Philadelphia, USA).Google Scholar
  12. Feigin, I., Allen, L.B., Lipkin, L., and Gross, S.W. (1958). The endothelial hyperplasia of the cerebral blood vessels with brain tumors and its sarcomatous transformation. Cancer 11, 264–277.CrossRefPubMedGoogle Scholar
  13. Felgenhauer, K. (1986). The blood-brain barrier redefined. J. Neurol. 233, 193–194.CrossRefPubMedGoogle Scholar
  14. Ferrara, N., and Henzel, W.J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–859.CrossRefPubMedGoogle Scholar
  15. Fidler, I.J. (1973). Selection of successive tumour lines for metastasis. Nat. New Biol. 242, 148–149.PubMedGoogle Scholar
  16. Fidler, I.J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth GHA Clowes memorial award lecture. Cancer Res. 50, 6130–6138.PubMedGoogle Scholar
  17. Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the ’seed and soil’ revisited (Timeline). Nat. Rev. Cancer 3, 453–458.CrossRefPubMedGoogle Scholar
  18. Fidler, I.J., and Kripke, M.E. (1977). Metastasis results from pre-existing variant cells within a malignant tumor. Science 197, 893–895.CrossRefPubMedGoogle Scholar
  19. Fidler, I.J., and Talmadge, J.E. (1986). Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res. 46, 5167–5171.PubMedGoogle Scholar
  20. Fidler, I.J., Yano, S., Zhang, R.D., Fujimaki, T., and Bucana, C.D. (2002). The seed and soil hypothesis: vascularization and brain metastasis. Lancet Oncol. 3, 53–57.CrossRefPubMedGoogle Scholar
  21. Fields, R.D., and Stevens-Graham, B. (2002). New insights into neuron-glia communication. Science 298, 556–562.CrossRefPubMedGoogle Scholar
  22. Folkman, J. (1995). Clinical approaches of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763.CrossRefPubMedGoogle Scholar
  23. Fujimaki, T., Fan, D., Staroselsky, A.H., Gohji, K., Bucana, C.D., and Fidler, I.J. (1993). Critical factors regulating site-specific brain metastasis of murine melanomas. Int. J. Oncol. 3, 789–799.Google Scholar
  24. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via a specific labeling of nuclear DNA fragmentation. J. Cell Biol.119, 493–501.CrossRefPubMedGoogle Scholar
  25. Gay, P.C., Litchy, W.J., and Carcino, T.L. (1987). Brain metastasis in hypernephroma. J. Neurooncol. 5, 51–56.CrossRefPubMedGoogle Scholar
  26. Gregoire, N. (1989). The blood-brain barrier. J. Neuroradiol. 16, 238–250.PubMedGoogle Scholar
  27. Greig, N.H., Soncrant, T.T., Shetty, H.U., Momma, S., Smith, Q.R., and Rapoport, S.I. (1990). Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother. Pharmacol. 26, 263–268.CrossRefPubMedGoogle Scholar
  28. Groothuis, D.R., Fischer, J.M., Lapin, G., Bigner, D.D., and Vick, N.A. (1982). Permeability of different experimental brain tumor models to horseradish peroxidase. J. Neuropathol. Exp. Neurol. 41, 164–185.CrossRefPubMedGoogle Scholar
  29. Hart, I.R., Talmadge, J.E., and Fidler, I.J. (1981). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 41, 1281–1287.PubMedGoogle Scholar
  30. Holash, J., Maisonpierre, P.C., Compton, D., Boland, P., Alexander, C.R., Zagzag, D., Yancopoulos, G.D., and Wiegand, S.J. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.CrossRefPubMedGoogle Scholar
  31. Hu, F., Wang, R.Y., and Hsu, T.C. (1987). Clonal origin of metastasis in B16 murine melanoma: a cytogenetic study. J. Natl. Cancer Inst. 67, 947–956.Google Scholar
  32. Jain, R.K. (2001). Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Del. Rev. 46, 149–168.CrossRefGoogle Scholar
  33. Johansson, B.B. (1990). The physiology of the blood-brain barrier. Adv. Exp. Med. Biol. 274, 25–39.PubMedGoogle Scholar
  34. Kanematsu, T., Matsumata, T., Takenaka, K., Yoshida, Y., Higashi, H., and Sugimachi, K. (1988). Clinical management of recurring hepatocellular carcinoma after primary resection. Br. J. Surg. 75, 203–206.CrossRefPubMedGoogle Scholar
  35. Kim, S.J., Baker, C.H., Kitadia, Y., Nakamuyra, T., Kuwai, T., Sasaki, T., Langley, R., and Fidler, I.J. (2010). Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. In Proc. 101st Ann. Meeting of the Amer. Assoc. Cancer Res., 2010 Apr 17–21, Washington, DC. Abst nr 3428.Google Scholar
  36. Landis, S.H., Murray, T., Bolden, S., and Wingo, P.A. (1998). Cancer statistics. CA Cancer J. Clin. 48, 6–29.CrossRefPubMedGoogle Scholar
  37. Langley, R.R., and Fidler, I.J. (2007). Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28, 297–321.CrossRefPubMedGoogle Scholar
  38. Langley, R.R., Fan, D., Guo, L., Zhang, C., Lin, Q., Brantley, E.C., McCarty, J.H., and Fidler, I.J. (2009). Generation of an immortalized astrocyte cell line from H-2K b-tsA58 mice to study the role of astrocytes in brain metastasis. Int. J. Oncol. 35, 665–672.CrossRefPubMedGoogle Scholar
  39. Li, L., Price, J.E., Fan., D., Zhang, R., Bucana, C.D., and Fidler, I.J. (1989). Correlation of growth capacity of human tumor cells in hard agarose with their in vivo proliferative capacity at specific metastatic sites. J. Natl. Cancer Inst. 81, 1406–1412.CrossRefPubMedGoogle Scholar
  40. Lin, Q., Balasubramanian, K.K., Fan, D., Kim, S.J., Guo, L., Wang, H., Bar-Eli, M., Aldape, K.D., and Fidler, I.J. (2010). Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia (in press).Google Scholar
  41. Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–332.CrossRefPubMedGoogle Scholar
  42. Mahesh, V.B., Dhandapani, K.M., and Brann, D.W. (2006). Role of astrocytes in reproduction and neuroprotection. Mol. Cell. Endocrinol. 246, 1–9.CrossRefPubMedGoogle Scholar
  43. Miller, G. (2005). Neuroscience: the dark side of glia. Science 308, 778–781.CrossRefPubMedGoogle Scholar
  44. Nagy, J.A., Morgan, E.S., Herzberg, K.T., Manseau, E.J., Dvorak, A.M., and Dvorak, H.F. (1995). Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res. 55, 376–385.PubMedGoogle Scholar
  45. Nicolson, G. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion, and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 7, 143–188.CrossRefPubMedGoogle Scholar
  46. Norden, A.D., Wen, P.Y., and Kesari, S. (2005). Brain metastasis. Curr. Opin. Neurol. 18, 654–661.PubMedGoogle Scholar
  47. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573.CrossRefGoogle Scholar
  48. Patan, S. (1998). Tie1 and Tie2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc. Res. 56, 1–21.CrossRefPubMedGoogle Scholar
  49. Patan, S., Munn, L.L., and Jain, R.K. (1996). Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272.CrossRefPubMedGoogle Scholar
  50. Poste, G., and Fidler, I.J. (1980). The pathogenesis of cancer metastasis. Nature 283, 139–146.CrossRefPubMedGoogle Scholar
  51. Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671–674.CrossRefPubMedGoogle Scholar
  52. Russ, J.C. (1989). Uses of the Euclidean distance map for the measurement of features in images. J. Comp. Assist. Miscrosc. 1, 343–375.Google Scholar
  53. Russ, J.C. (1995). The Image Processing Handbook, 2nd ed., (Boca Raton, USA: CRC Press), pp. 463–469.Google Scholar
  54. Sawaya, R., Bindal, R., and Lang, F.F. (2001). Metastatic brain tumors. In Brian Tumors, A.H. Kaye, and E.E. Laws, eds. (New York, USA: Churchill-Livingsone), pp. 999–1026.Google Scholar
  55. Schackert, G., and Fidler, I.J. (1988a). Development of in vivo models for studies of brain metastasis. Int. J. Cancer 41, 589–594.CrossRefPubMedGoogle Scholar
  56. Schackert, G., and Fidler, I.J. (1988b). Site-specific metastasis of mouse melanomas and a fibrosarcoma in the brain or meninges of syngeneic animals. Cancer Res. 48, 3478–3484PubMedGoogle Scholar
  57. Schackert, G., Simmons, R.D., Buzbee, T.M., Hume, D.A., and Fidler, I.J. (1988). Macrophage infiltration into experimental brain metastasis: occurrence through an intact blood-brain barrier. J. Natl. Cancer Inst. 80, 1027–1034.CrossRefPubMedGoogle Scholar
  58. Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., and Dvorak, H.F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985.CrossRefPubMedGoogle Scholar
  59. Schlingemann, R.O., Rietveld, F.J., de Waal, R.M., Ferrone, S., and Ruiter, D.J. (1990). Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am. J. Pathol. 136, 1393–1405.PubMedGoogle Scholar
  60. Shapiro, W.R., and Shapiro, J.R. (1986). Principles of brain tumor chemotherapy. Semin. Oncol. 1, 56–69.Google Scholar
  61. Sofroniew, M.V. (2005). Reactive astrocytes in neural repair and protection. Neuroscientist 11, 400–407.CrossRefPubMedGoogle Scholar
  62. Stewart, P.A., Hayakawa, K., Farrell, C.L., and Del Maestro, R.F. (1987). Quantitative study of microvessel ultrastructure in human peritumoral brain tissue: evidence for a blood-brain barrier defect. J. Neurosurg. 67, 697–705.CrossRefPubMedGoogle Scholar
  63. Talmadge, J.E., and Fidler, I.J. (1982). Cancer metastasis is selective or random depending on the parent tumor population. Nature 27, 593–594.CrossRefGoogle Scholar
  64. Talmadge, J.E., and Fidler, I.J. (2010). AACR Centennial Series: The biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669.CrossRefPubMedGoogle Scholar
  65. Talmadge, J.E., Wolman, S.R., and Fidler, I.J. (1982). Evidence for the clonal origin of spontaneous metastasis. Science 217, 361–363.CrossRefPubMedGoogle Scholar
  66. Tannock, I.F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273.PubMedGoogle Scholar
  67. Tarin, D., Price, J.E., Kettlewell, M.G.W., Souter, R.G., Vass, A.C., and Crossley, B. (1984). Mechanisms of human tumor metastasis studied in patients with peritoneouvenous shunts. Cancer Res. 44, 3584–3591.PubMedGoogle Scholar
  68. Tomlinson, E. (1987). Theory and practice of site-specific drug delivery. Adv. Drug Deliv. Rev. 1, 187–198.CrossRefGoogle Scholar
  69. Tsukuda, T., Fouad, A., and Pickren, J.W. (1983). Central nervous system metastasis from breast carcinoma: autopsy study. Cancer 52, 2349–2354.CrossRefGoogle Scholar
  70. Unemori, E.N., Ferrara, N., Bauer, E.A., and Amento, E.P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol. 153, 557–562.CrossRefPubMedGoogle Scholar
  71. Viadana, E., Bross, I.D.J., and Pickren, J.W. (1978). The metastatic spread of cancers of the digestive system in man. Oncology 35, 114–126.CrossRefPubMedGoogle Scholar
  72. Weidner, N. (1998). Tumoral vascularity as a prognostic factor in cancer patients: the evidence continues to grow (Editorial). Am. J. Pathol. 184, 130–135.CrossRefGoogle Scholar
  73. Weiss, L. (1985). Principles of Metastasis (Orlando, USA: Academic Press).Google Scholar
  74. Yano, S., Shinohara, H., Herbst, R.S., Kuniyasu, H., Bucana, C.D., Ellis, L.M., Davis, D.W., McConkey, D.J., and Fidler, I.J. (2000). Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 260, 4959–4967.Google Scholar
  75. Zagzag, D., Goldenberg, M., and Brem, S. (1989). Angiogenesis and blood-brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am. J. Roentgenol. 153, 141–146.Google Scholar
  76. Zhang, R.D., Price, J.E., Schackert, G., Itoh, K., and Fidler, I.J. (1991). Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications of prognosis. Cancer Res. 51, 2029–2035.PubMedGoogle Scholar
  77. Zhang, R.D., Price, J.E., Fujimaki, T., Bucana, C.D., and Fidler IJ.. (1992). Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am. J. Pathol. 141, 1115–1124.PubMedGoogle Scholar
  78. Zuelch, K.G. (1986). Brain tumors: their biology and pathology, 3rd eds., (Berlin, Germany: Springer-Verlag), pp. 480–498.Google Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Isaiah J. Fidler
    • 1
    Email author
  • Krishnakumar Balasubramanian
    • 1
  • Qingtang Lin
    • 1
  • Seung Wook Kim
    • 1
  • Sun-Jin Kim
    • 1
  1. 1.Department of Cancer Biology, Cancer Metastasis Research CenterThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations