Molecules and Cells

, Volume 30, Issue 4, pp 347–353 | Cite as

Reproductive fitness and dietary choice behavior of the genetic model organism Caenorhabditis elegans under semi-natural conditions

  • Katharina Freyth
  • Tim Janowitz
  • Frank Nunes
  • Melanie Voss
  • Alexander Heinick
  • Joanne Bertaux
  • Stefan Scheu
  • Rüdiger J. Paul


Laboratory breeding conditions of the model organism C. elegans do not correspond with the conditions in its natural soil habitat. To assess the consequences of the differences in environmental conditions, the effects of air composition, medium and bacterial food on reproductive fitness and/or dietary-choice behavior of C. elegans were investigated. The reproductive fitness of C. elegans was maximal under oxygen deficiency and not influenced by a high fractional share of carbon dioxide. In media approximating natural soil structure, reproductive fitness was much lower than in s tandard laboratory media. I n seminatural media, the reproductive fitness of C. elegans was low with the standard laboratory food bacterium E. coli (γ-Proteobacteria), but significantly higher with C. arvensicola (Bacteroidetes) and B. tropica (β-Proteobacteria) as food. Dietary-choice experiments in semi-natural media revealed a low preference of C. elegans for E. coli but significantly higher preferences for C. arvensicola and B. tropica (among other bacteria). Dietary-choice experiments under quasi-natural conditions, which were feasible by fluorescence in situ hybridization (FISH) of bacteria, showed a high preference of C. elegans for Cytophaga-Flexibacter-Bacteroides, Firmicutes, and β-Proteobacteria, but a low preference for γ-Proteobacteria. The results show that data on C. elegans under standard laboratory conditions have to be carefully interpreted with respect to their biological significance.


carbon dioxide FISH oxygen soil bacteria soil structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abada, E.A., Sung, H., Dwivedi, M., Park, B.J., Lee, S.K., and Ahnn, J. (2009). C. elegans behavior of preference choice on bacterial food. Mol. Cells 28, 209–213.CrossRefGoogle Scholar
  2. Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925.PubMedGoogle Scholar
  3. Ashelford, K.E., Fry, J.C., Bailey, M.J., and Day, M.J. (2002). Characterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp. quinovora Grimont et al. 1983 to Serratia quinivorans corrig., sp. nov. Int. J. Syst. Evol. Microbiol. 52, 2281–2289.CrossRefPubMedGoogle Scholar
  4. American Society for Testing and Materials (ASTM) (2006). Standard guide for conducting soil toxicity tests with the nematode Caenorhabditis elegans. In Annual Book of ASTM Standards 11.06, E2172-01.Google Scholar
  5. Avery, L., and Thomas, J.H. (1997). Feeding and defecation. In C. elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, eds. (Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press), pp. 679–716.Google Scholar
  6. Avery, L., and Shtonda, B.B. (2003). Food transport in the C. elegans pharynx. J. Exp. Biol. 206, 2441–2457.CrossRefPubMedGoogle Scholar
  7. Bargmann, C.I. (2006). Chemosensation in C. elegans. In Worm Book, The C. elegans Research Community, eds., (, doi/10.1895/wormbook.1.123.1).
  8. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.PubMedGoogle Scholar
  9. Bretscher, A.J., Busch, K.E., and de Bono, M. (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 8044–8049.CrossRefPubMedGoogle Scholar
  10. Burggren, W., and Warburton, S. (2005). Comparative developmental physiology: an interdisciplinary convergence. Annu. Rev. Physiol. 67, 203–223.CrossRefPubMedGoogle Scholar
  11. Cheung, B.H.H., Cohen, M., Rogers, C., Albayram, O., and de Bono, M. (2005). Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr. Biol. 15, 905–917.CrossRefPubMedGoogle Scholar
  12. Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., and Wagner, M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444.PubMedGoogle Scholar
  13. Donkin, S.G., and Dusenbery, B.D. (1993). A soil toxicity test using the nematode Caenorhabditis elegans and an effective method of recovery. Arch. Environ. Contam. Toxicol. 25, 145–151.CrossRefGoogle Scholar
  14. Fierer, N., Bradford, M.A., and Jackson, R.B. (2007). Towards an ecological classification of soil bacteria. Ecology 88, 1354–1364.CrossRefPubMedGoogle Scholar
  15. Föll, R.L., Pleyers, A., Lewandovski, G.J., Wermter, C., Hegemann, V., and Paul, R.J. (1999). Anaerobiosis in the nematode Caenorhabditis elegans. Comp. Biochem. Physiol. B 124, 269–280.CrossRefPubMedGoogle Scholar
  16. Fuchs, B., Wallner, G., Beisker, W., Schwippl, I., Ludwig, W., and Amann, R. (1998). Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 64, 4973–4982.PubMedGoogle Scholar
  17. Gobat, J.M., Aragno, M., and Matthey, W. (2003). The Living Soil. (Enfield, USA: Science Publishers).Google Scholar
  18. Gray, J., and Lissmann, H.W. (1964). The locomotion of nematodes. J. Exp. Biol. 41, 135–154.PubMedGoogle Scholar
  19. Gray, J.M., Karow, D.S., Lu, H., Chang, A.J., Chang, J.S., Ellis, R.E., Marletta, M.A., and Bargmann, C.I. (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322.CrossRefPubMedGoogle Scholar
  20. Hallem, E.A., and Sternberg, P.W. (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 8038–8043.CrossRefPubMedGoogle Scholar
  21. Hasshoff, M., Boehnisch, C., Tonn, D., Hasert, B., and Schulenburg, H. (2007). The role of Caenorhabditis elegans insulin-like signalling in the behavioural avoidance of pathogenic Bacillus thuringiensis. FASEB J. 21, 1801–1812.CrossRefPubMedGoogle Scholar
  22. Hope, I.A. (1999). C. elegans. Practical Approach Series. (New York, USA: Oxford University Press).Google Scholar
  23. Kämpfer, P., Young, C.C., Sridhar, K.R., Arun, A.B., Lai, W.A., Shen, F.T., and Rekha, P.D. (2006). Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int. J. Syst. Evol. Microbiol. 56, 2223–2228.CrossRefPubMedGoogle Scholar
  24. Kiontke, K., and Sudhaus, W. (2006). Ecology of Caenorhabditis species. In Worm Book, The C. elegans Research Community, eds., (, doi/10.1895/wormbook.1.37.1).
  25. Laws, T.R., Atkins, H.S., Atkins, T.P., and Titball, R.W. (2006). The pathogen Pseudomonas aeruginosa negatively affects the attraction response of the nematode Caenorhabditis elegans to bacteria. Microb. Path. 40, 293–297.CrossRefGoogle Scholar
  26. Lee, D.L., and Atkinson, H.J. (1976). Physiology of nematodes. (London, UK: Macmillan).Google Scholar
  27. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H. (1992). Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593–600.Google Scholar
  28. Meier, H., Amann, R., Ludwig, W., and Schleifer, K.-H. (1999). Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol. 22, 186–196.PubMedGoogle Scholar
  29. Nakagawa, Y., and Yamasato, K. (1993). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J. Gen. Microbiol. 139, 1155–1161.PubMedGoogle Scholar
  30. Neidig, N., Jousset, A., Nunes, F., Bonkowski, M., Paul, R.J., and Scheu, S. (2010). Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct. Ecol. (in press).Google Scholar
  31. O’sullivan, L.A., Weightman, A.J., and Fry, J.C. (2002). A new degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probe reveals high bacterial diversity in River Taff epilithon. Appl. Environ. Microbiol. 68, 201–210.CrossRefPubMedGoogle Scholar
  32. Oyaizu, H., Komagata, K., Amemura, A., and Harada, T. (1982). A succinoglycan-decomposing bacterium Cytophaga arvensicola sp. nov. J. Gen. Appl. Microbiol. 28, 269–388.CrossRefGoogle Scholar
  33. Pankratov, T.A., Kulichevskaya, I.S., Liesack, W., and Dedysh, S.N. (2006). Isolation of aerobic, gliding, xylanolytic and laminarinolytic bacteria from acidic Sphagnum peatlands and emended description of Chitinophaga arvensicola Kämpfer et al. Int. J. Syst. Evol. Microbiol. 56, 2761–2764.CrossRefPubMedGoogle Scholar
  34. Park, S., Hwang, H., Nam, S.-W., Martinez, F., Austin, R.H., and Ryu, W.S. (2008). Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS ONE 3, e2550.CrossRefPubMedGoogle Scholar
  35. Reis, V.M., Estrada-de los Santos, P., Tenorio-Salgado, S., Vogel, J., Stoffels, M., Guyon, S., Mavingui, P., Baldani, V.L.D., Schmid, M., Baldani, J.I., et al. (2004). Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Evol. Microbiol. 54, 2155–2162.CrossRefPubMedGoogle Scholar
  36. Sharabi, K., Hurwitz, A., Simon, A.J., Beitel, G.J., Morimoto, R.I., Rechavi, G., Sznajder, J.I., and Gruenbaum, Y. (2009). Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 106, 4024–4029.CrossRefPubMedGoogle Scholar
  37. Shtonda, B.B., and Avery, L. (2006). Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89–102.CrossRefPubMedGoogle Scholar
  38. Skvortsova, E.B., and Utkaeva, V.F. (2008). Soil pore space arrangement as a geometric indicator of soil structure. Eurasian Soil Sci. 41, 1354–1361.CrossRefGoogle Scholar
  39. Stiernagle, T. (2006). Maintenance of C. elegans. In Worm Book, The C. elegans Research Community, eds., (, doi/10.1895/wormbook.1.101.1).
  40. Stotzky, G. (1972). Activity, ecology, and population dynamics of microorganisms in soil. CRC Crit. Rev. Microbiol. 2, 59–137.CrossRefPubMedGoogle Scholar
  41. Sulton, J.E., and Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics 77, 95–104.Google Scholar
  42. Van Voorhies, W.A., and Ward, S. (2000). Broad oxygen tolerance in the nematode Caenorhabditis elegans. J. Exp. Biol. 203, 2467–2478PubMedGoogle Scholar
  43. Van Voorhies, W.A., Fuchs, J., and Thomas, S. (2005). The longevity of Caenorhabditis elegans in soil. Biol. Lett. 1, 247–249.CrossRefPubMedGoogle Scholar
  44. Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471–484.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Katharina Freyth
    • 1
  • Tim Janowitz
    • 1
  • Frank Nunes
    • 1
  • Melanie Voss
    • 1
  • Alexander Heinick
    • 1
  • Joanne Bertaux
    • 2
  • Stefan Scheu
    • 3
  • Rüdiger J. Paul
    • 1
  1. 1.Institute of ZoophysiologyUniversity of MuensterMuensterGermany
  2. 2.Laboratoire Génétique Ecologie, Evolution, SymbioseUniversité de PoitiersPoitiers CedexFrance
  3. 3.J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GoettingenGoettingenGermany

Personalised recommendations