Molecules and Cells

, Volume 30, Issue 1, pp 59–64 | Cite as

C1qTNF-related protein-6 increases the expression of interleukin-10 in macrophages

  • Mi-Jin Kim
  • Wan Lee
  • Eun-Ju Park
  • Seung-Yoon Park


C1qTNF-Related proteins (CTRPs), a new highly conserved family of adiponectin paralogs, were recently identified as being involved in diverse processes including metabolism, host defense, apoptosis, cell differentiation, and organogenesis. However, the functional role of CTRP6 remains poorly identified. Here we provide evidence that CTRP6 induces the expression of interleukin-10 (IL-10) in macrophages. Conditioned medium from CTRP6-expressing HEK293 cells increased IL-10 expression in Raw264.7 cells. The globular domain of CTRP6 (gCTRP6) also dose-dependently increased both IL-10 mRNA and protein expression levels, with transcript levels increasing within 2 h. Furthermore, the globular domain of CTRP6 rapidly induced phosphorylation of ERK1/2 in Raw264.7 cells. Treatment with U0126, a selective inhibitor, abolished CTRP6-stimulated IL-10 induction. Taken together, there results demonstrate that CTRP6 induces expression of IL-10 via ERK1/2 activation. Considering that IL-10 is a potent anti-inflammatory cytokine that modulates inflammatory signaling pathways, CTRP6 may be a novel target for pharmacological drugs in inflammatory diseases.


C1qTNF6 CTRP6 ERK1/2 interleukin-10 macrophages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, H., Furukawa, S., Wakisaka, S., and Maeda, T. (2007). CTRP3/cartducin promotes proliferation and migration of endothelial cells. Mol. Cell. Biochem. 304, 243–248.CrossRefPubMedGoogle Scholar
  2. Ayyagari, R., Mandal, M.N., Karoukis, A.J., Chen, L., McLaren, N.C., Lichter, M., Wong, D.T., Hitchcock, P.F., Caruso, R.C., Moroi, S.E., et al. (2005). Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation. Invest. Ophthalmol. Vis. Sci. 46, 3363–3371.CrossRefPubMedGoogle Scholar
  3. Hayward, C., Shu, X., Cideciyan, A.V., Lennon, A., Barran, P., Zareparsi, S., Sawyer, L., Hendry, G., Dhillon, B., Milam, A.H., et al. (2003). Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum. Mol. Genet. 12, 2657–2667.CrossRefPubMedGoogle Scholar
  4. Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., and Tobe, K. (2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792.CrossRefPubMedGoogle Scholar
  5. Kim, T.W., Moon, H.B., and Kim, S.J. (2003). Interleukin-10 is upregulated by prolactin and serum-starvation in cultured mammary epithelial cells. Mol. Cells 16, 168–172.PubMedGoogle Scholar
  6. Kim, K.Y., Kim, H.Y., Kim, J.H., Lee, C.H., Kim, D.H., Lee, Y.H., Han, S.H., Lim, J.S., Cho, D.H., Lee, M.S., et al. (2006). Tumor necrosis factor-alpha and interleukin-1beta increases CTRP1 expression in adipose tissue. FEBS Lett. 580, 3953–3960.CrossRefPubMedGoogle Scholar
  7. Kumada, M., Kihara, S., Ouchi, N., Kobayashi, H., Okamoto, Y., Ohashi, K., Maeda, K., Nagaretani, H., Kishida, K., Maeda, N., et al. (2004). Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 109, 2046–2049.CrossRefPubMedGoogle Scholar
  8. Lasser, G., Guchhait, P., Ellsworth, J.L., Sheppard, P., Lewis, K., Bishop, P., Cruz, M.A., Lopez, J.A., and Fruebis, J. (2006). C1qTNF-related protein-1 (CTRP-1): a vascular wall protein that inhibits collagen-induced platelet aggregation by blocking VWF binding to collagen. Blood 107, 423–430.CrossRefPubMedGoogle Scholar
  9. Lee, W., Choi, H.I., Kim, M.J., and Park, S.Y. (2008). Depletion of mitochondrial DNA up-regulates the expression of MDR1 gene via an increase in mRNA stability. Exp. Mol. Med. 40, 109–117.CrossRefPubMedGoogle Scholar
  10. Lee, W., Kim, M.J., Park, E.J., Choi, Y.J., and Park, S.Y. (2010). C1qTNF-related protein-6 mediates fatty acid oxidation via the activation of the AMP-activated protein kinase. FEBS Lett. 584, 968–972.CrossRefPubMedGoogle Scholar
  11. Liu, Y.W., Chen, C.C., Tseng, H.P., and Chang, W.C. (2006). Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK- and NF-kappaB-induced CCAAT/enhancer-binding protein delta in mouse macrophages. Cell. Signal. 18, 1492–1500.CrossRefPubMedGoogle Scholar
  12. Maeda, T., Jikko, A., Abe, M., Yokohama-Tamaki, T., Akiyama, H., Furukawa, S., Takigawa, M., and Wakisaka, S. (2006). Cartducin, a paralog of Acrp30/adiponectin, is induced during chondrogenic differentiation and promotes proliferation of chondro genic precursors and chondrocytes. J. Cell. Physiol. 206, 537–544.CrossRefPubMedGoogle Scholar
  13. Park, S.Y., Choi, G.H., Choi, H.I., Ryu, J., Jung, C.Y., and Lee, W. (2005). Depletion of mitochondrial DNA causes impaired glucose utilization and insulin resistance in L6 GLUT4myc myocytes. J. Biol. Chem. 280, 9855–9864.CrossRefPubMedGoogle Scholar
  14. Park, P.H., Huang, H., McMullen, M.R., Bryan, K., and Nagy, L.E. (2008). Activation of cyclic-AMP response element binding protein contributes to adiponectin-stimulated interleukin-10 expression in RAW 264.7 macrophages. J. Leukoc. Biol. 83, 1258–1266.CrossRefPubMedGoogle Scholar
  15. Park, S.Y., Choi, J.H., Ryu, H.S., Pak, Y.K., Park, K.S., Lee, H.K., and Lee, W. (2009). C1q tumor necrosis factor alpha-related protein isoform 5 is increased in mitochondrial DNA-depleted myocytes and activates AMP-activated protein kinase. J. Biol. Chem. 284, 27780–27789.CrossRefPubMedGoogle Scholar
  16. Sag, D., Carling, D., Stout, R.D., and Suttles, J. (2008). Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641.PubMedGoogle Scholar
  17. Schaffler, A., Scholmerich, J., and Salzberger, B. (2007). Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol. 28, 393–399.CrossRefPubMedGoogle Scholar
  18. Weigert, J., Neumeier, M., Schaffler, A., Fleck, M., Scholmerich, J., Schutz, C., and Buechler, C. (2005). The adiponectin paralog CORS-26 has anti-inflammatory properties and is produced by human monocytic cells. FEBS Lett. 579, 5565–5570.PubMedGoogle Scholar
  19. Wolf, A.M., Wolf, D., Rumpold, H., Enrich, B., and Tilg, H. (2004). Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323, 630–635.CrossRefPubMedGoogle Scholar
  20. Wong, G.W., Krawczyk, S.A., Kitidis-Mitrokostas, C., Ge, G., Spooner, E., Hug, C., Gimeno, R., and Lodish, H.F. (2009). Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J. 23, 241–258.CrossRefPubMedGoogle Scholar
  21. Wong, G.W., Wang, J., Hug, C., Tsao, T.S., and Lodish, H.F. (2004). A family of Acrp30/adiponectin structural and functional paralogs. Proc. Natl. Acad. Sci. USA 101, 10302–10307.CrossRefPubMedGoogle Scholar
  22. Wong, G.W., Krawczyk, S.A., Kitidis-Mitrokostas, C., Revett, T., Gimeno, R., and Lodish, H.F. (2008). Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPARgamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem. J. 416, 161–177.CrossRefPubMedGoogle Scholar
  23. Wulster-Radcliffe, M.C., Ajuwon, K.M., Wang, J., Christian, J.A., and Spurlock, M.E. (2004). Adiponectin differentially regulates cytokines in porcine macrophages. Biochem. Biophys. Res. Commun. 316, 924–929.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Mi-Jin Kim
    • 1
  • Wan Lee
    • 1
  • Eun-Ju Park
    • 1
  • Seung-Yoon Park
    • 1
  1. 1.Department of Biochemistry, School of MedicineDongguk UniversityKyungjuKorea

Personalised recommendations