Molecules and Cells

, Volume 29, Issue 6, pp 567–574 | Cite as

A cyclophilin A CPR1 overexpression enhances stress acquisition in Saccharomyces cerevisiae

  • Il-Sup Kim
  • Hyun-Young Kim
  • Sun-Young Shin
  • Young-Saeng Kim
  • Dong Hee Lee
  • Kyung Moc Park
  • Ho-Sung Yoon
Article

Abstract

Cyclophilins are conserved cis-trans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. We found the expression of cyclophilin A, Cpr1, changes in response to exposure to yeast Saccharomyces cerevisiae to abiotic stress conditions. The effect of Cpr1 overexpression in stress responses was therefore examined. The CPR1 gene was cloned to the yeast expression vector pVTU260 under regulation of an endogenous alcohol dehydrogenase (ADH) promoter. The overexpression of Cpr1 drastically increased cell viability of yeast in the presence of stress inducers, such as cadmium, cobalt, copper, hydrogen peroxide, tert-butyl hydroperoxide (t-BOOH), and sodium dodecyl sulfate (SDS). The Cpr1 expression also enhanced the cell rescue program resulting in a variety of antioxidanr enzymes including thioredoxin system (particularly, thioredoxin peroxidase), metabolic enzymes (glucose-6-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase), and molecular chaperones (Hsp104, Hsp90, Hsp60 and Hsp42). Thus, our study illustrates the importance of Cpr1 as a molecular chaperone that improves cellular stress responses through collaborative relationships with other proteins when yeast cells are exposed to adverse conditions, and it also premises the improvement of yeast strains.

Keywords

cell rescue proteins cyclophilin A protein expression stress tolerance Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamis, P.D., Gomes, D.S., Pereira, M.D., Freire de Mesquita, J., Pinto, M.L., Panek, A.D., and Eleutherio, E.C. (2004). The effect of superoxide dismutase deficiency on cadmium stress. J. Biochem. Mol. Toxicol. 18, 12–17.CrossRefPubMedGoogle Scholar
  2. Arevalo-Rodriguez, M., and Heitman, J. (2005). Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryot. Cell 4, 17–29.CrossRefPubMedGoogle Scholar
  3. Arevalo-Rodriguez, M., Cardenas, M.E., Wu, X., Hanes, S.D., and Heitman, J. (2000). Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J. 19, 3739–3749.CrossRefPubMedGoogle Scholar
  4. Arevalo-Rodriguez, M., Wu, X., Hanes, S.D., and Heitman, J. (2004). Prolyl isomerases in yeast. Front. Biosci. 9, 2420–2446.CrossRefPubMedGoogle Scholar
  5. Barik, S. (2006). Immunophilins: for the love of proteins. Cell. Mol. Life Sci. 63, 2889–2900.CrossRefPubMedGoogle Scholar
  6. Berger, R., Schauwecker, F., and Keller, U. (1999). Transcriptional analysis of the cyclophilin A gene (cypA) of Streptomyces chrysomallus. FEMS Microbiol. Lett. 178, 39–45.CrossRefPubMedGoogle Scholar
  7. Bernier-Villamor, L., Navarro, E., Sevilla, F., and Lazaro, J.J. (2004). Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum. J. Exp. Bot. 55, 2191–2199.CrossRefPubMedGoogle Scholar
  8. Brown, C.R., Cui, D.Y., Hung, G.G., and Chiang, H.L. (2001). Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles. J. Biol. Chem. 276, 48017–48026.PubMedGoogle Scholar
  9. Cabiscol, E., Piulats, E., Echave, P., Herrero, E., and Ros, J. (2000). Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275, 27393–27398.PubMedGoogle Scholar
  10. Cabiscol, E., Belli, G., Tamarit, J., Echave, P., Herrero, E., and Ros, J. (2002). Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J. Biol. Chem. 277, 44531–44538.CrossRefPubMedGoogle Scholar
  11. Chen, X., Guo, P., Xie, Z., and Shen, P. (2001). A convenient and rapid method for genetic transformation of E. coli with plasmids. Antonie Van Leeuwenhoek 80, 297–300.CrossRefPubMedGoogle Scholar
  12. Chen, A.P., Wang, G.L., Qu, Z.L., Lu, C.X., Liu, N., Wang, F., and Xia, G.X. (2007). Ectopic expression of ThCYP1, a stressresponsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep. 26, 237–245.CrossRefPubMedGoogle Scholar
  13. Coaker, G., Falick, A., and Staskawicz, B. (2005). Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308, 548–550.CrossRefPubMedGoogle Scholar
  14. Costa, V.M., Amorim, M.A., Quintanilha, A., and Moradas-Ferreira, P. (2002). Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic. Biol. Med. 33, 1507–1515.CrossRefPubMedGoogle Scholar
  15. Costa, V., Quintanilha, A., and Moradas-Ferreira, P. (2007). Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life 59, 293–298.CrossRefPubMedGoogle Scholar
  16. Dolinski, K., Muir, S., Cardenas, M., and Heitman, J. (1997). All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 13093–13098.CrossRefPubMedGoogle Scholar
  17. Dominguez-Solis, J.R., He, Z., Lima, A., Ting, J., Buchanan, B.B., and Luan, S. (2008). A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc. Natl. Acad. Sci. USA 105, 16386–16391.CrossRefPubMedGoogle Scholar
  18. Doyle, V., Virji, S., and Crompton, M. (1999). Evidence that cyclophilin-A protects cells against oxidative stress. Biochem. J. 341, 127–132.CrossRefPubMedGoogle Scholar
  19. Drahota, Z., Krivakova, P., Cervinkova, Z., Kmonickova, E., Lotkova, H., Kucera, O., and Houstek, J. (2005). Tert-butyl hydroperoxide selectively inhibits mitochondrial respiratory-chain enzymes in isolated rat hepatocytes. Physiol. Res. 54, 67–72.PubMedGoogle Scholar
  20. Fratelli, M., Demol, H., Puype, M., Casagrande, S., Eberini, I., Salmona, M., Bonetto, V., Mengozzi, M., Duffieux, F., Miclet, E., et al. (2002). Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. USA 99, 3505–3510.CrossRefPubMedGoogle Scholar
  21. Galat, A. (2004). Function-dependent clustering of orthologues and paralogues of cyclophilins. Proteins 56, 808–820.CrossRefPubMedGoogle Scholar
  22. Gietz, R.D., and Schiestl, R.H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34.CrossRefPubMedGoogle Scholar
  23. Howlett, N.G., and Avery, S.V. (1997). Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl. Environ. Microbiol. 63, 2971–2976.PubMedGoogle Scholar
  24. Izawa, S., Ikeda, K., Ohdate, T., and Inoue, Y. (2007). Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem. Biophys. Res. Commun. 352, 750–755.CrossRefPubMedGoogle Scholar
  25. Jaschke, A., Mi, H., and Tropschug, M. (1998). Human T cell cyclophilin18 binds to thiol-specific antioxidant protein Aop1 and stimulates its activity. J. Mol. Biol. 277, 763–769.CrossRefPubMedGoogle Scholar
  26. Kim, I.S., Yun, H.S., Park, I.S., Sohn, H.Y., Iwahashi, H., and Jin, I.N. (2006). A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J. Biosci. Bioeng. 102, 288–296.CrossRefPubMedGoogle Scholar
  27. Kim, J., Choi, T.G., Ding, Y., Kim, Y., Ha, K.S., Lee, K.H., Kang, I., Ha, J., Kaufman, R.J., Lee, J., et al. (2008). Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress. J. Cell. Sci. 121, 3636–3648.CrossRefPubMedGoogle Scholar
  28. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.CrossRefPubMedGoogle Scholar
  29. Laxa, M., Konig, J., Dietz, K.J., and Kandlbinder, A. (2007). Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. Biochem. J. 401, 287–297.CrossRefPubMedGoogle Scholar
  30. Lee, J.P., Palfrey, H.C., Bindokas, V.P., Ghadge, G.D., Ma, L., Miller, R.J., and Roos, R.P. (1999). The role of immunophilins in mutant superoxide dismutase-1linked familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 96, 3251–3256.CrossRefPubMedGoogle Scholar
  31. Lee, S.P., Hwang, Y.S., Kim, Y.J., Kwon, K.S., Kim, H.J., Kim, K., and Chae, H.Z. (2001). Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J. Biol. Chem. 276, 29826–29832.CrossRefPubMedGoogle Scholar
  32. Lewinska, A., and Bartosz, G. (2007). Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic. Res. 41, 580–590.CrossRefPubMedGoogle Scholar
  33. Massignan, T., Casoni, F., Basso, M., Stefanazzi, P., Biasini, E., Tortarolo, M., Salmona, M., Gianazza, E., Bendotti, C., and Bonetto, V. (2007). Proteomic analysis of spinal cord of presymptomatic amyotrophic lateral sclerosis G93A SOD1 mouse. Biochem. Biophys. Res. Commun. 353, 719–725.CrossRefPubMedGoogle Scholar
  34. Medina-Silva, R., Barros, M.P., Galhardo, R.S., Netto, L.E., Colepicolo, P., and Menck, C.F. (2006). Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis. Res. Microbiol. 157, 275–281.CrossRefPubMedGoogle Scholar
  35. Mendoza-Cozatl, D., Loza-Tavera, H., Hernandez-Navarro, A., and Moreno-Sanchez, R. (2005). Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29, 653–671.CrossRefPubMedGoogle Scholar
  36. Moskvina, E., Schuller, C., Maurer, C.T., Mager, W.H., and Ruis, H. (1998). A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14, 1041–1050.CrossRefPubMedGoogle Scholar
  37. Nigam, N., Singh, A., Sahi, C., Chandramouli, A., and Grover, A. (2008). SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol. Genet. Genomics 279, 371–383.CrossRefPubMedGoogle Scholar
  38. Piotukh, K., Gu, W., Kofler, M., Labudde, D., Helms, V., and Freund, C. (2005). Cyclophilin A binds to linear peptide motifs containing a consensus that is present in many human proteins. J. Biol. Chem. 280, 23668–23674.CrossRefPubMedGoogle Scholar
  39. Reddy, P.A., and Atreya, C.D. (1999). Identification of simian cyclophilin A as a calreticulin-binding protein in yeast two-hybrid screen and demonstration of cyclophilin A interaction with calreticulin. Int. J. Biol. Macromol. 25, 345–351.CrossRefPubMedGoogle Scholar
  40. Romano, P.G., Horton, P., and Gray, J.E. (2004). The Arabidopsis cyclophilin gene family. Plant Physiol. 134, 1268–1282.CrossRefPubMedGoogle Scholar
  41. Santos, A.N., Korber, S., Kullertz, G., Fischer, G., and Fischer, B. (2000). Oxygen stress increases prolyl cis/trans isomerase activity and expression of cyclophilin 18 in rabbit blastocysts. Biol. Reprod. 62, 1–7.CrossRefPubMedGoogle Scholar
  42. Sikka, S.C. (1996). Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front. Biosci. 1, e78–86.PubMedGoogle Scholar
  43. Sirisattha, S., Momose, Y., Kitagawa, E., and Iwahashi, H. (2004). Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res. 38, 61–70.CrossRefPubMedGoogle Scholar
  44. Wang, P., and Heitman, J. (2005). The cyclophilins. Genome Biol. 6, 226.CrossRefPubMedGoogle Scholar
  45. Wang, P., Cardenas, M.E., Cox, G.M., Perfect, J.R., and Heitman, J. (2001). Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep. 2, 511–518.CrossRefPubMedGoogle Scholar
  46. Wenzel, T.J., Teunissen, A.W., and de Steensma, H.Y. (1995). PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23, 883–884.CrossRefPubMedGoogle Scholar
  47. Wong, D.K., Lee, B.Y., Horwitz, M.A., and Gibson, B.W. (1999). Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun. 67, 327–336.PubMedGoogle Scholar
  48. Wu, Y., Li, Q., and Chen, X.Z. (2007). Detecting protein-protein interactions by Far western blotting. Nat. Protoc. 2, 3278–3284.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Il-Sup Kim
    • 1
  • Hyun-Young Kim
    • 1
  • Sun-Young Shin
    • 1
  • Young-Saeng Kim
    • 1
  • Dong Hee Lee
    • 2
  • Kyung Moc Park
    • 2
  • Ho-Sung Yoon
    • 1
  1. 1.Department of BiologyKyungpook National UniversityDaeguKorea
  2. 2.Genomine Inc.PohangKorea

Personalised recommendations