Molecules and Cells

, Volume 29, Issue 6, pp 575–580

Parkin Suppresses c-Jun N-terminal kinase-induced cell death via transriptional regulation in Drosophila

  • Soojin Hwang
  • Darae Kim
  • Gahee Choi
  • Seon Woo An
  • Yoon Ki Hong
  • Yoon Seak Suh
  • Min Jung Lee
  • Kyoung Sang Cho
Article

Abstract

Parkin is the most prevalent genetic factor in the onset of autosomal recessive juvenile parkinsonism (AR-JP), and mutations in parkin has been reported to cause motor defects, which result from dopamine deficiency caused by dopaminergic neuronal cell death. Activation of c-Jun N-terminal kinase (JNK) has also been implicated in neuronal cell death in Parkinson’s disease (PD). Moreover, Drosophila models for AR-JP, loss of function mutants of Drosophila parkin, also show dopaminergic neural degeneration associated with hyperactivation of JNK, increased apoptosis, and mitochondrial defects. However, the molecular mechanism by which Parkin protects cells from apoptosis remains unclear. In the present study, we tested whether Drosophila Parkin suppressed the JNK signaling pathway in developing tissues. Ectopically expressed parkin strongly suppressed the constitutively active form of Hemipterous (HepCA), a Drosophila JNK kinase that induces an eye degeneration phenotype and apoptosis in the eye imaginal disc. Moreover, parkin also suppressed extra vein formation induced by Basket (Bsk), a Drosophila JNK. Interestingly, the bsk mRNA level was markedly reduced by parkin over-expression, suggesting that the effect of parkin on the phenotype induced by activation of JNK signaling was achieved by transcriptional regulation. Furthermore, we found that the expression level of JNK target genes was reduced by parkin over-expression. Taken together, these results suggest that Drosophila Parkin suppresses JNK signaling by reducing bsk transcription.

Keywords

flooding apoptosis bsk hep JNK Parkin Parkinson’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y., and Matsumoto, K. (1999). Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400, 166–169.CrossRefPubMedGoogle Scholar
  2. Biskup, S., Gerlach, M., Kupsch, A., Reichmann, H., Riederer, P., Vieregge, P., Wüllner, U., and Gasser, T. (2008). Genes associated with Parkinson syndrome. J. Neurol. 255, 8–17.CrossRefPubMedGoogle Scholar
  3. Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.PubMedGoogle Scholar
  4. Cassarino, D.S., Halvorsen, E.M., Swerdlow, R.H., Abramova, N.N., Parker, W.D., Jr., Sturgill, T.W., and Bennett, J.P., Jr. (2000). Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson’s disease. J. Neurochem. 74, 1384–1392.CrossRefPubMedGoogle Scholar
  5. Cha, G.H., Kim, S., Park, J., Lee, E., Kim, M., Lee, S.B., Kim, J.M., Chung, J., and Cho, K.S. (2005). Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl. Acad. Sci. USA 102, 10345–10350.CrossRefPubMedGoogle Scholar
  6. Chung, K.K., Zhang, Y., Lim, K.L., Tanaka, Y., Huang, H., Gao, J., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7, 1144–1150.CrossRefPubMedGoogle Scholar
  7. da Costa, C.A., Sunyach, C., Giaime, E., West, A., Corti, O., Brice, A., Safe, S., Abou-Sleiman, P.M., Wood, N.W., Takahashi, H., et al. (2009). Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat. Cell. Biol. 11, 1370–1375.CrossRefPubMedGoogle Scholar
  8. Hwang, S., and Cho, K.S. (2006). Parkin inhibits Daxx-like protein-induced extra wing vein formation in Drosophila. J. Basic Sci. 31, 15–19.Google Scholar
  9. Igaki, T. (2009). Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis 14, 1021–1028.CrossRefPubMedGoogle Scholar
  10. Imai, Y., Soda, M., Inoue, H., Hattori, N., Mizuno, Y., and Takahashi, R. (2001). An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891–902.CrossRefPubMedGoogle Scholar
  11. Jeong, M., Cho, J., Cho, W., Shin, G., and Lee, K. (2009). The glucosamine-mediated induction of CHOP reduces the expression of inflammatory cytokines by modulating JNK and NF-κB in LPS-stimulated RAW264.7 cells. Gene & Genomics 31, 251–260.Google Scholar
  12. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.CrossRefPubMedGoogle Scholar
  13. Lang, A.E., and Lozano, A.M. (1998). Parkinson’s disease. First of two parts. N. Engl. J. Med. 339, 1044–1053.Google Scholar
  14. Liu, M., Aneja, R., Sun, X., Xie, S., Wang, H., Wu, X., Dong, J.T., Li, M., Joshi, H.C., and Zhou, J. (2008). Parkin regulates Eg5 expression by Hsp70 ubiquitination-dependent inactivation of c-Jun NH2-terminal kinase. J. Biol. Chem. 283, 35783–35788.CrossRefPubMedGoogle Scholar
  15. Nicolai, M., Lasbleiz, C., and Dura, J.M. (2003). Gain-of-function screen identifies a role of the Src64 oncogene in Drosophila mushroom body development. J. Neurobiol. 57, 291–302.CrossRefPubMedGoogle Scholar
  16. Rinne, J.O. (1993). Nigral degeneration in Parkinson’s disease. Mov. Disord. 8, 31–35.CrossRefGoogle Scholar
  17. Rorth, P. (1996). A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418–12422.CrossRefPubMedGoogle Scholar
  18. Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K., et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305.CrossRefPubMedGoogle Scholar
  19. Shimura, H., Schlossmacher, M.G., Hattori, N., Frosch, M.P., Trockenbacher, A., Schneider, R., Mizuno, Y., Kosik, K.S., and Selkoe, D.J. (2001). Ubiquitination of a new form of alphasynuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269.CrossRefPubMedGoogle Scholar
  20. Staropoli, J.F., McDermott, C., Martinat, C., Schulman, B., Demireva, E., and Abeliovich, A. (2003). Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749.CrossRefPubMedGoogle Scholar
  21. Tanaka, K., Suzuki, T., and Chiba, T. (1998) The ligation systems for ubiquitin and ubiquitin-like proteins. Mol. Cells 8, 503–512.PubMedGoogle Scholar
  22. Takahashi, R., Imai, Y., Hattori, N., and Mizuno, Y. (2003). Parkin and endoplasmic reticulum stress. Ann. N. Y. Acad. Sci. 991, 101–106.CrossRefPubMedGoogle Scholar
  23. Unschuld, P.G., Dächsel, J., Darios, F., Kohlmann, A., Casademunt, E., Lehmann-Horn, K., Dichgans, M., Ruberg, M., Brice, A., Gasser, T., et al. (2006). Parkin modulates gene expression in control and ceramide-treated PC12 cells. Mol. Biol. Rep. 33, 13–32.CrossRefPubMedGoogle Scholar
  24. Wang, W., Shi, L., Xie, Y., Ma, C., Li, W., Su, X., Huang, S., Chen, R., Zhu, Z., Mao, Z., et al. (2004). SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci. Res. 48, 195–202.CrossRefPubMedGoogle Scholar
  25. Xia, X.G., Harding, T., Weller, M., Bieneman, A., Uney, J.B., and Schulz, J.B. (2001). Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 98, 10433–10438.CrossRefPubMedGoogle Scholar
  26. Zhang, Y., Gao, J., Chung, K.K., Huang, H., Dawson, V.L., and Dawson, T.M. (2000). Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. USA 97, 13354–13359.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Soojin Hwang
    • 1
  • Darae Kim
    • 1
  • Gahee Choi
    • 1
  • Seon Woo An
    • 1
  • Yoon Ki Hong
    • 1
  • Yoon Seak Suh
    • 1
  • Min Jung Lee
    • 1
  • Kyoung Sang Cho
    • 1
  1. 1.Department of Biological SciencesKonkuk UniversitySeoulKorea

Personalised recommendations