Molecules and Cells

, Volume 29, Issue 1, pp 85–91 | Cite as

Ca2+ signaling induced by sphingosine 1-phosphate and lysophosphatidic acid in mouse B cells

  • Joo Hyun Nam
  • Dong Hun Shin
  • Jung Eun Min
  • Sang-Kyu Ye
  • Ju-Hong Jeon
  • Sung Joon Kim


Lysophospholipids (LPLs) such as lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are chemotactic for lymphocytes, and increases of in cytosolic [Ca2+] signal the regulation of lymphocyte activation and migration. Here, the authors investigated the effects of LPA and S1P on [Ca2+]c in mouse B cell lines (WEHI-231 and Bal-17) and primary B cells isolated from mouse spleen and bone marrow, and focused on the modulation of store-operated Ca2+ entry (SOCE) by LPLs. In Bal-17 (a mature B cell line) both LPA and S1P induced a transient [Ca2+]c increase via a phospholipase C pathway. In addition, pretreatment with LPLs was found to augment thapsigargin-induced SOCE in Bal-17 cells. However, in WEHI-231 (an immature B cell line) LPLs had no significant effect on [Ca2+]c or SOCE. Furthermore, in freshly isolated splenic B cells (SBCs) and bone marrow B cells (BMBCs), LPLs induced only a small increase in [Ca2+]c. Interestingly, however, pretreatment with LPLs markedly increased SOCE in primary B cells, and this augmentation was more prominent in BMBCs than SBCs. The unidirectional influx of Ca2+ was measured using Ba2+ as a surrogate ion. Similarly, Ba2+ influx was also found to be markedly increased by LPLs in SBCs and BMBCs. Summarizing, LPLs were found to strongly augment SOCE-mediated Ca2+-signaling in mouse B cells. However, unlike the mature Bal-17 cell line, PLC-dependent Ca2+ release was insignificant in primary B cells and inWEHI-231.


B cell Ca2+ signal lysophosphatidic acid sphingosine 1-phosphate store-operated Ca2+ influx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, A.K., Pober, J.S., and Lichtman, A.H. (2006). Cellular and Molecular Immunology (Elsevier).Google Scholar
  2. Aoki, J., Taira, A., Takanezawa, Y., Kishi, Y., Hama, K., Kishimoto, T., Mizuno, K., Saku, K., Taguchi, R., and Arai, H. (2002). Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J. Biol. Chem. 277, 48737–48744.CrossRefPubMedGoogle Scholar
  3. Cinamon, G., Matloubian, M., Lesneski, M.J., Xu, Y., Low, C., Lu, T., Proia, R.L., and Cyster, J.G. (2004). Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol. 5, 713–720.CrossRefPubMedGoogle Scholar
  4. Clair, T., Aoki, J., Koh, E., Bandle, R.W., Nam, S.W., Ptaszynska, M.M., Mills, G.B., Schiffmann, E., Liotta, L.A., and Stracke, M.L. (2003). Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res. 63, 5446–5453.PubMedGoogle Scholar
  5. Feske, S. (2007). Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702.CrossRefPubMedGoogle Scholar
  6. Goetzl, E.J., and Rosen, H. (2004). Regulation of immunity by lysosphingolipids and their G protein-coupled receptors. J. Clin. Invest. 114, 1531–1537.PubMedGoogle Scholar
  7. Graler, M.H., and Goetzl, E.J. (2002). Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim. Biophys. Acta 1582, 168–174.PubMedGoogle Scholar
  8. Harnett, M.M., Katz, E., and Ford, C.A. (2005). Differential signalling during B-cell maturation. Immunol. Lett. 98, 33–44.CrossRefPubMedGoogle Scholar
  9. Igarashi, H., Kuwahara, K., Nomura, J., Matsuda, A., Kikuchi, K., Inui, S., and Sakaguchi, N. (1994). B cell Ag receptor mediates different types of signals in the protein kinase activity between immature B cell and mature B cell. J. Immunol. 153, 2381–2393.PubMedGoogle Scholar
  10. Itagaki, K., and Hauser, C.J. (2003). Sphingosine 1-phosphate, a diffusible calcium influx factor mediating store-operated calcium entry. J. Biol. Chem. 278, 27540–27547.CrossRefPubMedGoogle Scholar
  11. Itagaki, K., Kannan, K.B., and Hauser, C.J. (2005). Lysophosphatidic acid triggers calcium entry through a non-store-operated pathway in human neutrophils. J. Leukoc. Biol. 77, 181–189.CrossRefPubMedGoogle Scholar
  12. King, L.B., and Monroe, J.G. (2000). Immunobiology of the immature B cell: plasticity in the B-cell antigen receptor-induced response fine tunes negative selection. Immunol. Rev. 176, 86–104.CrossRefPubMedGoogle Scholar
  13. Kunisawa, J., Kurashima, Y., Gohda, M., Higuchi, M., Ishikawa, I., Miura, F., Ogahara, I., and Kiyono, H. (2007). Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood 109, 3749–3756.CrossRefPubMedGoogle Scholar
  14. Kurosaki, T. (2002). Regulation of B cell fates by BCR signaling components. Curr. Opin. Immunol. 14, 341–347.CrossRefPubMedGoogle Scholar
  15. Lambeau, G., and Gelb, M.H. (2008). Biochemistry and physiology of mammalian secreted phospholipases A2. Annu. Rev. Biochem. 77, 495–520.CrossRefPubMedGoogle Scholar
  16. Lis, A., Peinelt, C., Beck, A., Parvez, S., Monteilh-Zoller, M., Fleig, A., and Penner, R. (2007). CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 17, 794–800.CrossRefPubMedGoogle Scholar
  17. Matloubian, M., Lo, C.G., Cinamon, G., Lesneski, M.J., Xu, Y., Brinkmann, V., Allende, M.L., Proia, R.L., and Cyster, J.G. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360.CrossRefPubMedGoogle Scholar
  18. McIntyre, T.M., Pontsler, A.V., Silva, A.R., St. Hilaire, A., Xu, Y., Hinshaw, J.C., Zimmerman, G.A., Hama, K., Aoki, J., Arai, H., et al. (2003). Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc. Natl. Acad. Sci. USA 100, 131–136.CrossRefPubMedGoogle Scholar
  19. Meyer Zu Heringdorf, D. (2004). Lysophospholipid receptor-dependent and -independent calcium signaling. J. Cell. Biochem. 92, 937–948.CrossRefPubMedGoogle Scholar
  20. Meyer Zu Heringdorf, D., and Jakobs, K.H. (2007). Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim. Biophys. Acta 1768, 923–940.CrossRefPubMedGoogle Scholar
  21. Noguchi, K., Herr, D., Mutoh, T., and Chun, J. (2009). Lysophosphatidic acid (LPA) and its receptors. Curr. Opin. Pharmacol. 9, 15–23.CrossRefPubMedGoogle Scholar
  22. Payne, S.G., Milstien, S., and Spiegel, S. (2002). Sphingosine-1-phosphate: dual messenger functions. FEBS Lett. 531, 54–57.CrossRefPubMedGoogle Scholar
  23. Ralph, P. (1979). Functional subsets of murine and human B lymphocyte cell lines. Immunol. Rev. 48, 107–121.CrossRefPubMedGoogle Scholar
  24. Roedding, A.S., Li, P.P., and Warsh, J.J. (2006). Characterization of the transient receptor potential channels mediating lysophosphatidic acid-stimulated calcium mobilization in B lymphoblasts. Life Sci. 80, 89–97.CrossRefPubMedGoogle Scholar
  25. Rosen, H., Sanna, G., and Alfonso, C. (2003). Egress: a receptor-regulated step in lymphocyte trafficking. Immunol. Rev. 195, 160–177.CrossRefPubMedGoogle Scholar
  26. Rosen, H., Gonzalez-Cabrera, P.J., Sanna, M.G., and Brown, S. (2009). Sphingosine 1-phosphate receptor signaling. Annu. Rev. Biochem. 78, 743–768.CrossRefPubMedGoogle Scholar
  27. Rosskopf, D., Daelman, W., Busch, S., Schurks, M., Hartung, K., Kribben, A., Michel, M.C., and Siffert, W. (1998). Growth factor-like action of lysophosphatidic acid on human B lymphoblasts. Am. J. Physiol. 274, C1573–1582.PubMedGoogle Scholar
  28. Scharenberg, A.M., Humphries, L.A., and Rawlings, D.J. (2007). Calcium signalling and cell-fate choice in B cells. Nat. Rev. Immunol. 7, 778–789.CrossRefPubMedGoogle Scholar
  29. Schwab, S.R., and Cyster, J.G. (2007). Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301.CrossRefPubMedGoogle Scholar
  30. Spiegel, S., and Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407.CrossRefPubMedGoogle Scholar
  31. Takabe, K., Paugh, S.W., Milstien, S., and Spiegel, S. (2008). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol. Rev. 60, 181–195.CrossRefPubMedGoogle Scholar
  32. Wang, L., Knudsen, E., Jin, Y., Gessani, S., and Maghazachi, A.A. (2004). Lysophospholipids and chemokines activate distinct signal transduction pathways in T helper 1 and T helper 2 cells. Cell. Signal. 16, 991–1000.PubMedGoogle Scholar
  33. Yang, L., Andrews, D.A., and Low, P.S. (2000). Lysophosphatidic acid opens a Ca(++) channel in human erythrocytes. Blood 95, 2420–2425.PubMedGoogle Scholar
  34. Yoo, H.Y., Zheng, H., Nam, J.H., Nguyen, Y.H., Kang, T.M., Earm, Y.E., and Kim, S.J. (2008). Facilitation of Ca2+-activated K+ channels (IKCa1) by mibefradil in B lymphocytes. Pflugers Arch. 456, 549–560.CrossRefPubMedGoogle Scholar
  35. Zeng, W., Yuan, J.P., Kim, M.S., Choi, Y.J., Huang, G.N., Worley, P.F., and Muallem. S. (2008). STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol. Cell 32, 439–448.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  • Joo Hyun Nam
    • 1
    • 2
  • Dong Hun Shin
    • 1
  • Jung Eun Min
    • 1
  • Sang-Kyu Ye
    • 3
    • 4
  • Ju-Hong Jeon
    • 1
  • Sung Joon Kim
    • 1
    • 3
    • 5
  1. 1.Department of PhysiologySeoul National University College of MedicineSeoulKorea
  2. 2.Infection Research InstituteSeoul National University College of MedicineSeoulKorea
  3. 3.Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulKorea
  4. 4.Department of PharmacologySeoul National University College of MedicineSeoulKorea
  5. 5.Kidney Research InstituteSeoul National University College of MedicineSeoulKorea

Personalised recommendations