Molecules and Cells

, Volume 29, Issue 1, pp 51–56 | Cite as

Expression of p25, an aberrant cyclin-dependent kinase 5 activator, stimulates basal secretion in PC12 cells



Although alterations in the functions of neurotransmitter systems have been implicated in the pathology of Alzheimer’s disease (AD), the mechanisms that give rise to these alterations are not well understood. The amount of p25, an aberrant cleavage product of p35 that activates cyclin-dependent kinase 5 (Cdk5), is elevated in AD brains. The role of Cdk5 in neurotransmitter release has been well established. In this study, we examined whether p25 was linked to altered neurotransmitter release in AD. Transient or stable expression of p25 significantly increased basal secretion of human growth hormone (hGH) or neurotransmitter in PC12 cells. Expression of a p25 phosphorylation-deficient mutant, T138A, inhibited basal hGH secretion relative to the p25 wild type, suggesting the involvement of Thr138 phosphorylation in secretion. The expression and activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), a key protease in the generation of β-amyloid, are increased in AD brains. Our previous studies indicated that overexpression of BACE1 enhanced basal secretion of hGH in PC12 cells. Transient coexpression of p25 and BACE1 further stimulated spontaneous basal secretion. These results indicate a novel role for p25 in the secretory pathway and suggest that elevated levels of p25 and BACE1 in AD brains may contribute to altered neurotransmitter pathology of AD through enhancing spontaneous basal secretion.


Alzheimer’s disease Cdk5 p25 PC12 cells secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barclay, J.W., Aldea, M., Craig, T.J., Morgan, A., and Burgoyne, R.D. (2004). Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J. Biol. Chem. 279, 41495–41503.CrossRefPubMedGoogle Scholar
  2. Choi, S.J., Kim, M.J., Heo, H.J., Hong, B., Cho, H.Y., Kim, Y.J., Kim, H.K., Lim, S.T., Jun, W.J., Kim, E.K., et al. (2007). Ameliorating effect of Gardenia jasminoides extract on amyloid beta peptideinduced neuronal cell deficit. Mol. Cells 24, 113–118.PubMedGoogle Scholar
  3. Chung, S.H. (2008). Cyclin-dependent kinase 5: a critical regulator of neurotransmitter release. In cyclin dependent kinase 5 (Cdk5), N.Y. Ip, and L.H., Tsai, ed. (New York, USA: Springer US), pp. 35–50.Google Scholar
  4. Chung, S.H., Song, W.J., Kim, K., Bednarski, J.J., Chen, J., Prestwich, G.D., and Holz, R.W. (1998). The C2 domains of Rabphilin3A specifically bind phosphatidylinositol 4,5-bisphosphate containing vesicles in a Ca2+-dependent manner. In vitro characteristics and possible significance. J. Biol. Chem. 273, 10240–10248.CrossRefPubMedGoogle Scholar
  5. Chung, S.H., Joberty, G., Gelino, E.A., Macara, I.G., and Holz, R.W. (1999). Comparison of the effects on secretion in chromaffin and PC12 cells of Rab3 family members and mutants. Evidence that inhibitory effects are independent of direct interaction with Rabphilin3. J. Biol. Chem. 274, 18113–18120.CrossRefPubMedGoogle Scholar
  6. Cruz, J.C., Tseng, H.C., Goldman, J.A., Shih, H., and Tsai, L.H. (2003). Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483.CrossRefPubMedGoogle Scholar
  7. Cruz, J.C., Kim, D., Moy, L.Y., Dobbin, M.M., Sun, X., Bronson, R.T., and Tsai, L.H. (2006). p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J. Neurosci. 26, 10536–10541.CrossRefPubMedGoogle Scholar
  8. Csernansky, J.G., Bardgett, M.E., Sheline, Y.I., Morris, J.C., and Olney, J.W. (1996). CSF excitatory amino acids and severity of illness in Alzheimer’s disease. Neurology 46, 1715–1720.PubMedGoogle Scholar
  9. Elrod, R., Peskind, E.R., DiGiacomo, L., Brodkin, K.I., Veith, R.C., and Raskind, M.A. (1997). Effects of Alzheimer’s disease severity on cerebrospinal fluid norepinephrine concentration. Am. J. Psychiatry 154, 25–30.PubMedGoogle Scholar
  10. Fletcher, A.I., Shuang, R., Giovannucci, D.R., Zhang, L., Bittner, M.A., and Stuenkel, E.L. (1999). Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J. Biol. Chem. 274, 4027–4035.CrossRefPubMedGoogle Scholar
  11. Fu, A.K., Ip, F.C., Fu, W.Y., Cheung, J., Wang, J.H., Yung, W.H., and Ip, N.Y. (2005). Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclindependent kinase 5 null mice. Proc. Natl. Acad. Sci. USA 102, 15224–15229.CrossRefPubMedGoogle Scholar
  12. Fukumoto, H., Cheung, B.S., Hyman, B.T., and Irizarry, M.C. (2002). Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol. 59, 1381–1389.CrossRefPubMedGoogle Scholar
  13. Graham, M.E., Sudlow, A.W., and Burgoyne, R.D. (1997). Evidence against an acute inhibitory role of nSec-1 (munc-18) in late steps of regulated exocytosis in chromaffin and PC12 cells. J. Neurochem. 69, 2369–2377.PubMedCrossRefGoogle Scholar
  14. Holz, R.W., and Fisher, S.K. (1999). 10. Synaptic transmission and cellular signaling: an overview in basic neurochemistry. (Lippincott Williams & Wilkins).Google Scholar
  15. Jimenez-Jimenez, F.J., Molina, J.A., Gomez, P., Vargas, C., de Bustos, F., Benito-Leon, J., Tallon-Barranco, A., Orti-Pareja, M., Gasalla, T., and Arenas, J. (1998). Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer’s disease. J. Neural Transm. 105, 269–277.CrossRefPubMedGoogle Scholar
  16. Kamei, H., Saito, T., Ozawa, M., Fujita, Y., Asada, A., Bibb, J.A., Saido, T.C., Sorimachi, H., and Hisanaga, S. (2007). Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J. Biol. Chem. 282, 1687–1694.CrossRefPubMedGoogle Scholar
  17. Khvotchev, M.V., Ren, M., Takamori, S., Jahn, R., and Sudhof, T.C. (2003). Divergent functions of neuronal Rab11b in Ca2+-regulated versus constitutive exocytosis. J. Neurosci. 23, 10531–10539.PubMedGoogle Scholar
  18. Lanari, A., Amenta, F., Silvestrelli, G., Tomassoni, D., and Parnetti, L. (2006). Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease. Mech. Ageing Dev. 127, 158–165.CrossRefPubMedGoogle Scholar
  19. Lee, K.Y., Rosales, J.L., Lee, B.C., Chung, S.H., Fukui, Y., Lee, N.S., Lee, K.Y., and Jeong, Y.G. (2004). Cdk5/p35 expression in the mouse ovary. Mol. Cells 17, 17–22.PubMedGoogle Scholar
  20. Lee, H.W., Seo, H.S., Ha, I., and Chung, S.H. (2007). Overexpression of BACE1 stimulates spontaneous basal secretion in PC12 cells. Neurosci. Lett. 421, 178–183.CrossRefPubMedGoogle Scholar
  21. Lee, H.W., Park, J.W., Sandagsuren, E.U., Kim, K.B., Yoo, J.J., and Chung, S.H. (2008). Overexpression of APP stimulates basal and constitutive exocytosis in PC12 cells. Neurosci. Lett. 436, 245–249.CrossRefPubMedGoogle Scholar
  22. Lilja, L., Yang, S.N., Webb, D.L., Juntti-Berggren, L., Berggren, P.O., and Bark, C. (2001). Cyclin-dependent kinase 5 promotes insulin exocytosis. J. Biol. Chem. 276, 34199–34205.CrossRefPubMedGoogle Scholar
  23. Lilja, L., Johansson, J.U., Gromada, J., Mandic, S.A., Fried, G., Berggren, P.O., and Bark, C. (2004). Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J. Biol. Chem. 279, 29534–29541.CrossRefPubMedGoogle Scholar
  24. Matsuuchi, L., and Kelly, R.B. (1991). Constitutive and basal secretion from the endocrine cell line, AtT-20. J. Cell Biol. 112, 843–852.CrossRefPubMedGoogle Scholar
  25. Palmada, M., and Centelles, J.J. (1998). Excitatory amino acid neurotransmission. Pathways for metabolism, storage and reuptake of glutamate in brain. Front. Biosci. 3, d701–718.PubMedGoogle Scholar
  26. Patrick, G.N., Zhou, P., Kwon, Y.T., Howley, P.M., and Tsai, L.H. (1998). p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem. 273, 24057–24064.CrossRefPubMedGoogle Scholar
  27. Patrick, G.N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L.H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622.CrossRefPubMedGoogle Scholar
  28. Pomara, N., Singh, R., Deptula, D., Chou, J.C., Schwartz, M.B., and LeWitt, P.A. (1992). Glutamate and other CSF amino acids in Alzheimer’s disease. Am. J. Psychiatry 149, 251–254.PubMedGoogle Scholar
  29. Rosales, J.L., and Lee, K.Y. (2006). Extraneuronal roles of cyclindependent kinase 5. Bioessays 28, 1023–1034.CrossRefPubMedGoogle Scholar
  30. Rosales, J.L., Ernst, J.D., Hallows, J., and Lee, K.Y. (2004). GTPdependent secretion from neutrophils is regulated by Cdk5. J. Biol. Chem. 279, 53932–53936.CrossRefPubMedGoogle Scholar
  31. Saito, T., Onuki, R., Fujita, Y., Kusakawa, G., Ishiguro, K., Bibb, J.A., Kishimoto, T., and Hisanaga, S. (2003). Developmental regulation of the proteolysis of the p35 cyclin-dependent kinase 5 activator by phosphorylation. J. Neurosci. 23, 1189–1197.PubMedGoogle Scholar
  32. Selkoe, D.J. (2002). Alzheimer’s disease is a synaptic failure. Science 298, 789–791.CrossRefPubMedGoogle Scholar
  33. Smith, C.C., Bowen, D.M., Francis, P.T., Snowden, J.S., and Neary, D. (1985). Putative amino acid transmitters in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer’s dementia. J. Neurol. Neurosurg. Psychiatry 48, 469–471.CrossRefPubMedGoogle Scholar
  34. Sugita, S., Janz, R., and Sudhof, T.C. (1999). Synaptogyrins regulate Ca2+-dependent exocytosis in PC12 cells. J. Biol. Chem. 274, 18893–18901.CrossRefPubMedGoogle Scholar
  35. Swatton, J.E., Sellers, L.A., Faull, R.L., Holland, A., Iritani, S., and Bahn, S. (2004). Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur. J. Neurosci. 19, 2711–2719.CrossRefPubMedGoogle Scholar
  36. Tandon, A., Yu, H., Wang, L., Rogaeva, E., Sato, C., Chishti, M.A., Kawarai, T., Hasegawa, H., Chen, F., Davies, P., et al. (2003). Brain levels of CDK5 activator p25 are not increased in Alzheimer’s or other neurodegenerative diseases with neurofibrillary tangles. J. Neurochem. 86, 572–581.CrossRefPubMedGoogle Scholar
  37. Tomizawa, K., Ohta, J., Matsushita, M., Moriwaki, A., Li, S.T., Takei, K., and Matsui, H. (2002). Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Qtype voltage-dependent calcium channel activity. J. Neurosci. 22, 2590–2597.PubMedGoogle Scholar
  38. Tseng, H.C., Zhou, Y., Shen, Y., and Tsai, L.H. (2002). A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett. 523, 58–62.CrossRefPubMedGoogle Scholar
  39. van den Pol, A.N., and Ghosh, P.K. (1998). Selective neuronal expression of green fluorescent protein with cytomegalovirus promoter reveals entire neuronal arbor in transgenic mice. J. Neurosci. 18, 10640–10651.PubMedGoogle Scholar
  40. Varro, A., Nemeth, J., Dickinson, C.J., Yamada, T., and Dockray, G.J. (1996). Discrimination between constitutive secretion and basal secretion from the regulated secretory pathway in GH3 cells. Biochim. Biophys. Acta 1313, 101–105.CrossRefPubMedGoogle Scholar
  41. Wen, Y., Yu, W.H., Maloney, B., Bailey, J., Ma, J., Marie, I., Maurin, T., Wang, L., Figueroa, H., Herman, M., et al. (2008). Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron 57, 680–690.CrossRefPubMedGoogle Scholar
  42. Xin, X., Ferraro, F., Back, N., Eipper, B.A., and Mains, R.E. (2004). Cdk5 and Trio modulate endocrine cell exocytosis. J. Cell Sci. 117, 4739–4748.CrossRefPubMedGoogle Scholar
  43. Yang, L.B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X.L., Beach, T., Sue, L., Wong, P., Price, D., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med. 9, 3–4.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Graduate Program in Neuroscience, Institute for Brain Science and TechnologyInje UniversityBusanKorea
  2. 2.Development and Differentiation Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  3. 3.Department of Biological SciencesKorean Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations