Advertisement

Molecules and Cells

, 28:431 | Cite as

Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance

  • Jung-A Kim
  • Kyoungwon Cho
  • Raksha Singh
  • Young-Ho Jung
  • Seung-Hee Jeong
  • So-Hee Kim
  • Jae-eun Lee
  • Yoon-Seong Cho
  • Ganesh K. Agrawal
  • Randeep Rakwal
  • Shigeru Tamogami
  • Birgit Kersten
  • Jong-Seong Jeon
  • Gynheung An
  • Nam-Soo JwaEmail author
Article

Abstract

Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-offunction and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Keywords

disease resistance lesion MAPKKK OsACDR1 pathogen rice 

References

  1. Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783–801.CrossRefPubMedGoogle Scholar
  2. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel F.M., and Sheen, J. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983.CrossRefPubMedGoogle Scholar
  3. Bari, R., and Jones, J.D. (2009). Role of plant hormones in plant defense responses. Plant Mol. Biol. 69, 473–488.CrossRefPubMedGoogle Scholar
  4. Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 24, 803–814.CrossRefGoogle Scholar
  5. Clarke, K.L., Larsen, P.B., Wang, X., and Chang, C. (1998). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA 95, 5401–5406.CrossRefGoogle Scholar
  6. Dangl, J.L., and Jones, J.D.G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.CrossRefPubMedGoogle Scholar
  7. Frye, C.A., and Innes, R.W. (1998). An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10, 947–956.CrossRefPubMedGoogle Scholar
  8. Frye, C.A., Tang, D., and Innes, R.W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98, 373–378.CrossRefPubMedGoogle Scholar
  9. Hiei, Y., Hta, S., Komari, Y., and Kunashiro, T. (1994). Effective transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.CrossRefPubMedGoogle Scholar
  10. Huang, Y., Li, H., Hutchison, C.E., Laskey, J., and Kieber, J.J. (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33, 221–233.CrossRefPubMedGoogle Scholar
  11. Ichimura, K. (MAPK Group). (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301–308.CrossRefGoogle Scholar
  12. Jung, Y.H., Agrawal, G.K., Rakwal, R., Kim, J.A., Lee, M.-O., Choi, P.G., Kim, Y.J., Kim, M.J., Shibato, J., Kim, S.-H., et al. (2006). Functional characterization of OsRacB GTPase-a potentially negative regulator of basal disease resistance in rice. Plant Physiol. Biochem. 44, 68–77.CrossRefPubMedGoogle Scholar
  13. Jwa, N.S., Agrawal, G.K., Tamogami, S., Yonekura, M., Han, O., Iwahashi, H., and Rakwal, R. (2006). Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol. Biochem. 44, 261–273.CrossRefPubMedGoogle Scholar
  14. Kim, J.A., Agrawal, G.K., Rakwal, R., Han, K.S., Kim, K.N., Yun, C.H., Heu, S., Park, S.Y., Lee, Y.H., Jwa, N.S., et al. (2003). Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Biochem. Biophys. Res. Commun. 300, 868–876.CrossRefPubMedGoogle Scholar
  15. Lee, M.O., Choi, P.G., Kim, J.A, Jung, Y.H., Jung, S.H., Kim, S.H., Kim, J.W., Lee, S.K., Jeon, J.S., Rakwal, R., et al. (2006). Two novel protein kinase genes, OsMSRPK1 and OsMSURPK2, are regulated by diverse environmental stresses in rice. J. Plant Biol. 49, 247–256.CrossRefGoogle Scholar
  16. Lam, E., Kato, N., and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853.CrossRefPubMedGoogle Scholar
  17. Ligterink, W., and Hirt, H. (2001). Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools. Int. Rev. Cytol. 201, 209–275.CrossRefPubMedGoogle Scholar
  18. Lin, Z., Alexander, L., Hackett, R., and Grierson, D. (2008). LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. Plant J. 54, 1083–1093.CrossRefPubMedGoogle Scholar
  19. Lorrain, S., Vailleau, F., Balague, C., and Roby, D. (2003). Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263–271.CrossRefPubMedGoogle Scholar
  20. Nakagami, H., Pitzschke, A., and Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci. 10, 339–346.CrossRefPubMedGoogle Scholar
  21. Pedley, K.F., and Martin, G.B. (2004). Identification of MAPKs and their possible MAPK kinase activators involved in the Ptomediated defense response of tomato. J. Biol. Chem. 279, 49229–49235.CrossRefPubMedGoogle Scholar
  22. Pieterse, C.M.J., and Dicke, M. (2007). Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci. 12, 564–568.CrossRefPubMedGoogle Scholar
  23. Rakwal, R., Kimura, S., Shibato, J., Nojima, K., Kim, Y.-K., Nahm, B.H., Jwa, N.-S., Endo, S., Tanaka, K., and Iwahashi, H. (2008). Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and timedependent gene expression changes. Mol. Cells 25, 272–278.PubMedGoogle Scholar
  24. Tamogami, S., Rakwal, R., and Kodama, O. (1997). Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett. 401, 239–242.CrossRefPubMedGoogle Scholar
  25. Tang, D., and Innes, R.W., (2002). Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J. 32, 975–983.CrossRefPubMedGoogle Scholar
  26. Tang, D., Christiansen, K.M., and Innes, R.W. (2005). Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol. 138, 1018–1026.CrossRefPubMedGoogle Scholar
  27. Van Etten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E. (1994). Two classes of plant antibiotics: phytoalexins versus ‘phytoanticipins’. Plant Cell. 6, 1191–1192.CrossRefGoogle Scholar
  28. Wasternack, C. (2007). An update on biosynthesis, signal transduction and action in plant stress responses, growth and development. Ann. Bot. 100, 681–697.CrossRefPubMedGoogle Scholar
  29. Yin, Z., Chen, J., Zeng, L., Goh, M., Leung, H., Khush, G.S., and Wang, G.L. (2000). Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol. Plant Microbe Interact. 13, 869–876.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Jung-A Kim
    • 1
  • Kyoungwon Cho
    • 2
  • Raksha Singh
    • 1
  • Young-Ho Jung
    • 1
  • Seung-Hee Jeong
    • 1
  • So-Hee Kim
    • 1
  • Jae-eun Lee
    • 1
  • Yoon-Seong Cho
    • 1
  • Ganesh K. Agrawal
    • 3
  • Randeep Rakwal
    • 3
    • 4
  • Shigeru Tamogami
    • 5
  • Birgit Kersten
    • 6
  • Jong-Seong Jeon
    • 7
  • Gynheung An
    • 8
  • Nam-Soo Jwa
    • 1
    Email author
  1. 1.Department of Molecular Biology, College of Natural ScienceSejong UniversitySeoulKorea
  2. 2.Environmental Biology DivisionNational Institute for Environmental Studies (NIES)IbarakiJapan
  3. 3.Research Laboratory for Biotechnology and BiochemistryKathmanduNepal
  4. 4.Health Technology Research Center (HTRC)National Institute of Advanced Industrial Science and TechnologyIbarakiJapan
  5. 5.Laboratory of Biologically Active Compounds, Department of Biological ProductionAkita Prefectural UniversityAkitaJapan
  6. 6.Max Planck Institute for Molecular Plant PhysiologyGabiPD Team, BioinformaticsPotsdam-GolmGermany
  7. 7.Graduate School of Biotechnology and Plant Metabolism Research CenterKyung Hee UniversityYonginKorea
  8. 8.National Research Laboratory, Department of Life Science and Center for Functional GenomicsPohang University of Science and TechnologyPohangKorea

Personalised recommendations