Molecules and Cells

, Volume 28, Issue 6, pp 559–563 | Cite as

Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays a key role in controlling cell fate via inhibition of caspase activity

  • Mi Jang
  • Hyo Jin Kang
  • Sun Young Lee
  • Sang J. Chung
  • Sunghyun Kang
  • Seung Wook Chi
  • Sayeon Cho
  • Sang Chul Lee
  • Chong-Kil Lee
  • Byoung Chul Park
  • Kwang-Hee Bae
  • Sung Goo Park
Article

Abstract

Glyceraldehyde-3-phosphate is a key intermediate in several central metabolic pathways of all organisms. Aldolase and glyceraldehyde-3-phosphate dehydrogenase are involved in the production or elimination of glyceraldehyde-3-phosphate during glycolysis or gluconeogenesis, and are differentially expressed under various physiological conditions, including cancer, hypoxia, and apoptosis. In this study, we examine the effects of glyceraldehyde-3-phosphate on cell survival and apoptosis. Overexpression of aldolase protected cells against apoptosis, and addition of glyceraldehyde-3-phosphate to cells delayed apoptosis. Additionally, delayed apoptotic phenomena were observed when glyceraldehyde-3-phosphate was added to a cell-free system, in which artificial apoptotic process was induced by adding dATP and cytochrome c. Surprisingly, glyceraldehyde-3-phosphate directly suppressed caspase-3 activity in a reversible noncompetitive mode, preventing caspase-dependent proteolysis. Based on these results, we suggest that glyceraldehyde-3-phosphate, a key molecule in several central metabolic pathways, functions as a molecule switch between cell survival and apoptosis.

Keywords

aldolase apoptosis caspase-3 GAPDH glyceraldehyde-3-phosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrain, C., Creagh, E.M., Cullen, S.P., and Martin, S.J. (2004). Caspase-dependent inactivation of proteasome function during programmed cell death in drosophila and man. J. Biol. Chem. 27, 36923–36930.CrossRefGoogle Scholar
  2. Altenberg, B., and Greulich, K.O. (2004). Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84, 1014–1020.CrossRefPubMedGoogle Scholar
  3. Bao, Q., and Shi, Y. (2007). Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ. 14, 56–65.CrossRefPubMedGoogle Scholar
  4. Chuang, D.-M., Hough, C., and Senatorov, V.V. (2005). Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 45, 269–290.CrossRefPubMedGoogle Scholar
  5. Fang, B., Boross, P., Tozser, J., and Weber, I.T. (2006). Structural and kinetic analysis of caspase-3 reveals role for S5 binding site in substrate recognition. J. Mol. Biol. 360, 654–666.CrossRefPubMedGoogle Scholar
  6. Garland, J.M., and Halestrap, A. (1997). Energy metabolism during apoptosis. Bcl-2 promotes survival in hematopoietic cells induced to apoptose by growth factor withdrawal by stabilizing a form of metabolic arrest. J. Biol. Chem. 272, 4680–4688.CrossRefPubMedGoogle Scholar
  7. Harlin, H., Reffey, S.B., Duckett, C.S., Lindsten, T., and Thompson, C.B. (2001). Characterization of XIAP-deficient mice. Mol. Cell. Biol. 21, 3604–3608.CrossRefPubMedGoogle Scholar
  8. Hoque, M.A., Ushiyama, H., Tomita, M., and Shimizu, K. (2005). Dynamic responses of the intracellular metabolite concentrations of the wild type and pkyA mutant Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochem. Eng. 26, 38–49.CrossRefGoogle Scholar
  9. Ishitani, R., Sunaga, K., Hirano, A., Saunders, P., Katsube, N., Tanaka, M., and Chuang, D.M. (1996). Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar granule neurons in culture. J. Neurochem. 66, 928–935.PubMedCrossRefGoogle Scholar
  10. Jang, M., Park, B.C., Lee, A.Y., Na, K.S., Kang, S., Bae, K.-H., Myung, P.K., Chung, B.C., Cho, S., Lee, D.H., et al. (2007). Caspase-7 mediated cleavage of proteasome subunits during apoptosis. Biochem. Biophys. Res. Commun. 363, 388–394.CrossRefPubMedGoogle Scholar
  11. Jang, M., Park, B.C., Kang, S., Lee, D.H., Cho, S., Lee, S.C., Bae, K.-H., and Park, S.G. (2008). Mining of caspase-7 substrates using a degradomic approach. Mol. Cells 26, 152–157.PubMedGoogle Scholar
  12. Jang, M., Park, B.C., Kang, S., Chi, S.-W., Cho, S., Chung, S.J., Lee, S.C., Bae, K.-H., and Park, S.G. (2009). Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene 28, 1529–1536.CrossRefPubMedGoogle Scholar
  13. Jiang, X., and Wang, X. (2000). Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to apaf-1. J. Biol. Chem. 275, 31199–31203.CrossRefPubMedGoogle Scholar
  14. Kass, G.E., Eriksson, J.E., Weis, M., Orrenius, S., and Chow, S.C. (1996). Chromatin condensation during apoptosis requires ATP. Biochem. J. 318, 749–752.PubMedGoogle Scholar
  15. Kilic, M., Kasperczyk, H., Fulda, S., and Debatin, K.-M. (2007). Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance. Oncogene 26, 2027–2038.CrossRefPubMedGoogle Scholar
  16. Kumar, S. (2007). Caspase function in programmed cell death. Cell Death Differ. 14, 32–43.CrossRefPubMedGoogle Scholar
  17. Lee, A.Y., Park, B.C., Jang, M., Cho, S., Lee, D.H., Lee, S.C., Myung, P.K., and Park, S.G. (2004). Identification of caspase-3 degradome by two-dimensional gel electrophoresis and matrixassisted laser desorption/ionization-time of flight analysis. Proteomics 4, 3429–3436.CrossRefPubMedGoogle Scholar
  18. Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P. (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486.CrossRefPubMedGoogle Scholar
  19. Li, C., Xiao, Z., Zhang, X., Li, J., Li, X., Yi, H., Li, M., Zhu, G., and Liang, S. (2006). Proteome analysis of human lung squamous carcinoma. Proteomics 6, 547–558.CrossRefPubMedGoogle Scholar
  20. Lu, H., Forbes, R.A., and Verma, A. (2002). Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 277, 23111–23115CrossRefPubMedGoogle Scholar
  21. Majors, B.S., Betenbaugh, M.J., and Chiang, G.G. (2007). Links between metabolism and apoptosis in mammalian cells: applications for anti-apoptosis engineering. Metab. Eng. 9, 317–326.CrossRefPubMedGoogle Scholar
  22. Na, K.S., Park, B.C., Jang, M., Cho, S., Lee, D.H., Kang, S., Lee, C.-K., Bae, K.-H., and Park, S.G. (2007). Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Mol. Cells 24, 261–267.PubMedGoogle Scholar
  23. Plas, D.R., and Thompson, C.B. (2002). Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab. 13, 75–78.CrossRefPubMedGoogle Scholar
  24. Priault, M., Chaudhuri, B., Clow, A., Camougrand, N., and Manon, S. (1999). Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur. J. Biochem. 260, 684–691.CrossRefPubMedGoogle Scholar
  25. Robey, R.B., and Hay, N. (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683–4696.CrossRefPubMedGoogle Scholar
  26. Schaefer, U., Boos, W., Takors, R., and Weuster-Botz, D. (1999). Automated sampling device for monitoring intracellular metabolite dynamics. Anal. Biochem. 270, 88–96.CrossRefPubMedGoogle Scholar
  27. Segel, I.H. (1975). Enzyme kinetics, Chapter 7 and 8, (New York: Wiley-Inter-science).Google Scholar
  28. Sen, N., Hara, M., Kornberg, M.D., Cascio, M.B., Bae, B.I., Shahani, N., Thomas, B., Dawson, T.M., Dawson, V.L., Snyder, S.H., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873.CrossRefPubMedGoogle Scholar
  29. Shim, H.Y., Park, J.H., Paik, H.D., Nah, S.Y., Kim, D.S., and Han Y.S. (2007). Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondriamediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol. Cells 24, 95–104.PubMedGoogle Scholar
  30. Shimizu, T., Kono, N., Kiyokawa, H., Yamada, Y., Hara, N., Mineo, I., Kawachi, M., Nakajima, H., Wang, Y.L., and Tarui, S. (1998). Erythrocyte glycolysis and its marked alteration by muscular exercise in type VII glycogenosis. Blood 71, 1130–1134.Google Scholar
  31. Unwin, R.D., Craven, R.A., Harnden, P., Hanrahan, S., Totty, N., Knowles, M., Eardley, I., Selby, P.J., and Banks, R.E. (2003). Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3, 1620–1632.CrossRefPubMedGoogle Scholar
  32. Vander Heiden, M.G., Plas, D.R., Rathmell, J.C., Fox, C.J., Harris, M.H., and Thompson, C.B. (2001). Growth factors can influence cell growth and survival though effects on glucose metabolism. Mol. Cell. Biol. 21, 5899–5912.CrossRefGoogle Scholar
  33. Vazquez, A., de Menezes, M.A., Barabasi, A.-L., and Oltvai, Z.N. (2008). Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis. PloS Comp. Biol. 4, e1000195.Google Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Mi Jang
    • 1
  • Hyo Jin Kang
    • 2
  • Sun Young Lee
    • 1
    • 3
  • Sang J. Chung
    • 2
  • Sunghyun Kang
    • 1
  • Seung Wook Chi
    • 1
  • Sayeon Cho
    • 4
  • Sang Chul Lee
    • 1
  • Chong-Kil Lee
    • 3
  • Byoung Chul Park
    • 1
  • Kwang-Hee Bae
    • 1
  • Sung Goo Park
    • 1
  1. 1.Medical Proteomics Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  2. 2.BioNanotechnology Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  3. 3.Department of PharmacyChungbuk National UniversityCheongjuKorea
  4. 4.College of PharmacyChung-Ang UniversitySeoulKorea

Personalised recommendations