Molecules and Cells

, Volume 28, Issue 4, pp 389–395 | Cite as

A tdcA mutation reduces the invasive ability of Salmonella enterica serovar typhimurium

  • Minjeong Kim
  • Sangyong Lim
  • Dongho Kim
  • Hyon E. Choy
  • Sangryeol Ryu
Article

Abstract

We previously observed that the transcription of some flagellar genes decreased in Salmonella Typhimurium tdcA mutant, which is a gene encoding the transcriptional activator of the tdc operon. Since flagella-mediated bacterial motility accelerates the invasion of Salmonella, we have examined the effect of tdcA mutation on the invasive ability as well as the flagellar biosynthesis in S. Typhimurium. A tdcA mutation caused defects in motility and formation of flagellin protein, FliC in S. Typhimurium. Invasion assays in the presence of a centrifugal force confirmed that the defect of flagellum synthesis decreases the ability of Salmonella to invade into cultured epithelial cells. In addition, we also found that the expression of Salmonella pathogenicity island 1 (SPI1) genes required for Salmonella invasion was down-regulated in the tdcA mutant because of the decreased expression of fliZ, a positive regulator of SPI1 transcriptional activator, hilA. Finally, the virulence of a S. Typhimurium tdcA mutant was attenuated compared to a wild type when administered orally. This study implies the role of tdcA in the invasion process of S. Typhimurium.

Keywords

flagella invasion Salmonella pathogenicity island tdcA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, V., Lucas, R.L., Hwang, C., and Lee, C.A. (1996). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22, 703–714.CrossRefPubMedGoogle Scholar
  2. Chilcott, G.S., and Hughes, K.T. (2000). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64, 694–708.CrossRefPubMedGoogle Scholar
  3. Choi, J., Shin, D., and Ryu, S. (2007). Implication of quorum sensing in Salmonella enterica serovar Typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity Island I. Infect. Immun. 75, 4885–4890.CrossRefPubMedGoogle Scholar
  4. Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.CrossRefPubMedGoogle Scholar
  5. Dorman, C.J., Barr, G.C., Ní Bhriain, N., and Higgins, C.F. (1988). DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression, J. Bacteriol. 170, 2816–2826.PubMedGoogle Scholar
  6. Drlica, K. (1992). Control of bacterial DNA supercoiling. Mol. Microbiol. 6, 425–433.CrossRefPubMedGoogle Scholar
  7. Eichelberg, K., and Galán, J.E. (2000). The flagellar sigma factor FliA (σ28) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect. Immun. 68, 2735–2743.CrossRefPubMedGoogle Scholar
  8. Ganduri, Y.L., Sadda, S.R., Datta, M.W., Jambukeswaran, R.K., and Datta, P. (1993). TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins. Mol. Gen. Genet. 240, 395–402.PubMedGoogle Scholar
  9. Gellert, M., Mizuuchi, K., O’Dea, M.H., and Nash, H.A. (1976). DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73, 3872–3876.CrossRefPubMedGoogle Scholar
  10. Goss, T.J., Schweizer, H.P., and Datta, P. (1988). Molecular characterization of the tdc operon of Escherichia coli K-12. J. Bacteriol. 170, 5352–5359.PubMedGoogle Scholar
  11. Guiney, D.G. (1997). Regulation of bacterial virulence gene expression by the host environment. J. Clin. Invest. 99, 565–569.CrossRefPubMedGoogle Scholar
  12. Hagewood, B.T., Ganduri, Y.L., and Datta, P. (1994). Functional analysis of the tdcABC promoter of Escherichia coli: roles of TdcA and TdcR. J. Bacteriol. 176, 6214–6220.PubMedGoogle Scholar
  13. Heßlinger, C., Fairhurst, S.A., and Sawers, G. (1998). Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27, 477–492.CrossRefPubMedGoogle Scholar
  14. Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, I.R., May, G., and Bremer, E. (1988). A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569–584.CrossRefPubMedGoogle Scholar
  15. Hsieh, L-.S., Burger, R.M., and Drlica, K. (1991). Bacterial DNA supercoiling and [ATP]/[ADP] changes associated with a transition to anaerobic growth. J. Mol. Biol. 219, 443–450.CrossRefPubMedGoogle Scholar
  16. Iyoda, S., Kamidoi, T., Hirose, K., Kutsukake, K., and Watanabe, H. (2001). A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb. Pathog. 30, 81–90.CrossRefPubMedGoogle Scholar
  17. Jones, G.W., Richardson, L.A., and Uhlman, D. (1981). The invasion of HeLa cells by Salmonella typhimurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J. Gen. Microbiol. 127, 351–360.PubMedGoogle Scholar
  18. Jones, B.D., Lee, C.A., and Falkow, S. (1992). Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60, 2475–2480.PubMedGoogle Scholar
  19. Josenhans, C., and Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291, 605–614.CrossRefPubMedGoogle Scholar
  20. Kelly, A., Goldberg, M.D., Carroll, R.K., Danino, V., Hinton, J.C.D., and Dorman, C.J. (2004). A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150, 2037–2053.CrossRefPubMedGoogle Scholar
  21. Kim, M., Lim, S., and Ryu, S. (2008). Molecular analysis of the Salmonella Typhimurium tdc operon regulation. J. Microbiol. Biotechnol. 18, 1024–1032.PubMedGoogle Scholar
  22. Ko, M., and Park, C. (2000). H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J. Bacteriol. 182, 4670–4672.CrossRefPubMedGoogle Scholar
  23. Komoriya, K., Shibano, N., Higano, T., Azuma, N., Yamaguchi, S., and Aizawa, S.I. (1999). Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34, 767–779.CrossRefPubMedGoogle Scholar
  24. Landini, P., and Zehnder, A.J.B. (2002). The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J. Bacteriol. 184, 1522–1529.CrossRefPubMedGoogle Scholar
  25. Lee, C.A., and Falkow, S. (1990). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87, 4304–4308.CrossRefPubMedGoogle Scholar
  26. Lehnen, D., Blumer, C., Polen, T., Wackwitz, B., Wendisch, V.F., and Unden, G. (2002). LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol. Microbiol. 45, 521–532.CrossRefPubMedGoogle Scholar
  27. Lim, S.-Y., Joe, M.H., Song, S.S., Lee, M.H., Foster, J.W., Park, Y.K., Choi, S.Y., and Lee, I.S. (2002). cuiD is a crucial gene for survival at high copper environment in Salmonella enterica serovar Typhimuirum. Mol. Cells 14, 177–184.PubMedGoogle Scholar
  28. Lim, S., Yong, K., and Ryu, S. (2005). Analysis of Salmonella pathogenicity island 1 expression in response to the changes of osmolarity. J. Microbiol. Biotechnol. 15, 175–182.Google Scholar
  29. Lim, S., Yoon, H., Ryu, S., Jung, J., Lee, M., and Kim, D. (2006). A comparative evaluation of radiation-induced DNA damage using real-time PCR: influence of base composition. Radiat. Res. 165, 430–437.CrossRefPubMedGoogle Scholar
  30. Lim, S., Yun, J., Yoon, H., Park, C., Kim, B., Jeon, B., Kim, D., and Ryu, S. (2007). Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res. 35, 1822–1832.CrossRefPubMedGoogle Scholar
  31. Liu, S.L., Ezaki, T., Miura, H., Matsui, K., and Yabuuchi, E. (1988). Intact motility as a Salmonella typhi invasion-related factor. Infect. Immun. 56, 1967–1973.PubMedGoogle Scholar
  32. Lucas, R.L., Lostroh, C.P., DIRusso, C.C., Spector, M.P., Wanner, B.L., and Lee, C.A. (2000). Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182, 1872–1882.CrossRefPubMedGoogle Scholar
  33. Lostroh, C.P., and Lee, C.A. (2001). The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect. 3, 1281–1291.CrossRefPubMedGoogle Scholar
  34. Maloy, S.R., Stewart, V.J., and Taylor, R.K. (1996). Genetic Analysis of Pathogenic Bacteria: A Laboratory Manual, (New York: Cold Spring Harbor Laboratory Press).Google Scholar
  35. Sawers, G. (1998). The anaerobic degradation of L-serine and Lthreonine in enterobacteria: networks of pathways and regulatory signals. Arch. Microbiol. 171, 1–5.CrossRefPubMedGoogle Scholar
  36. Schmitt, C.K., Ikeda, J.S., Darnell, S.C., Watson, P.R., Bispham, J., Wallis, T.S., Weinstein, D.L., Metcalf, E.S., and O’Brien, A.D. (2001). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69, 5619–5625.CrossRefPubMedGoogle Scholar
  37. Schweizer, H.P., and Datta, P. (1989). Identification and DNA sequence of tdcR, a positive regulatory gene of the tdc operon of Escherichia coli. Mol. Gen. Genet. 218, 516–522.CrossRefPubMedGoogle Scholar
  38. Shi, W., Li, C., Louise, C., and Adler, J. (1993). Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J. Bacteriol. 175, 2236–2240.PubMedGoogle Scholar
  39. Song, M., Kim, H., Kim, E., Shin, M., Lee, H., Hong, Y., Rhee, J., Yoon, H., Ryu, S., Lim, S., et al. (2004). ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island I. J. Biol. Chem. 279, 34183–34190.CrossRefPubMedGoogle Scholar
  40. Soutourina, O.A., and Bertin, P.N. (2003). Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol. Rev. 27, 505–523.CrossRefPubMedGoogle Scholar
  41. Stecher, B., Hapfelmeier, S., Müller, C., Kremer, M., Stallmach, T., and Hardt, W.D. (2004). Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72, 4138–4150.CrossRefPubMedGoogle Scholar
  42. Sumantran, V.N., Tranguch, A.J., and Datta, P. (1989). Increased expression of biodegradative threonine dehydratase of Escherichia coli by DNA gyrase inhibitors. FEMS Microbiol. Lett. 65, 37–40.CrossRefGoogle Scholar
  43. Tomita, T., and Kanegasaki, S. (1982). Enhanced phagocytic response of macrophages to bacteria by impact caused by bacterial motility or centrifugation. Infect. Immun. 38, 865–870.PubMedGoogle Scholar
  44. Wu, Y., and Datta, P. (1995). Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12. Mol. Gen. Genet. 247, 764–767.CrossRefPubMedGoogle Scholar
  45. Wu, Y., Patil, R.V., and Datta, P. (1992). Catabolite gene activator protein and integration host factor act in concert to regulate tdc operon expression in Escherichia coli. J. Bacteriol. 174, 6918–6927.PubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Minjeong Kim
    • 1
  • Sangyong Lim
    • 2
  • Dongho Kim
    • 2
  • Hyon E. Choy
    • 3
  • Sangryeol Ryu
    • 1
  1. 1.Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life SciencesSeoul National UniversitySeoulKorea
  2. 2.Radiation Research Center for BiotechnologyKorea Atomic Energy Research InstituteJeongeupKorea
  3. 3.Genome Research Center for Enteropathogenic Bacteria and Research Institute of Vibrio Infection and Department of MicrobiologyChonnam National University Medical CollegeGwangjuKorea

Personalised recommendations