Advertisement

Molecules and Cells

, 28:369 | Cite as

Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes

  • Eugene Jeon
  • Jeong-eun Hyeon
  • Dong Jin Suh
  • Young-Woong Suh
  • Seoung Wook Kim
  • Kwang Ho Song
  • Sung Ok Han
Article

Abstract

Heterologous secretory expression of endoglucanase E (Clostridium thermocellum) and β-glucosidase 1 (Saccharomycopsis fibuligera) was achieved in Saccharomyces cerevisiae fermentation cultures as an α-mating factor signal peptide fusion, based on the native enzyme coding sequence. Ethanol production depends on simultaneous saccharification of cellulose to glucose and fermentation of glucose to ethanol by a recombinant yeast strain as a microbial biocatalyst. Recombinant yeast strain expressing endoglucanase and β-glucosidase was able to produce ethanol from β-glucan, CMC and acid swollen cellulose. This indicates that the resultant yeast strain of this study acts efficiently as a whole cell biocatalyst.

Keywords

beta-glucosidase cellulose degradation Clostridium thermocellum endoglucanase ethanol production extracellular expression Saccharomyces cerevisiae 

References

  1. Abdeev, R.M., Goldenkova, I.V., Musiychuk, K.A., and Piruzian, E.S. (2001). Exploring the properties of thermostable Clostridium thermocellum cellulase CelE for the purpose of its expression in plants. Biochemistry 66, 808–813.PubMedGoogle Scholar
  2. Arikan, B., Unaldi, M.N., Guvenmez, H., and Coral, G. (2002). Some Properties of Crude Carboxymethyl Cellulase of Aspergillus niger Z10 wild-Type Strain. Turk. J. Biol. 26, 209–213.Google Scholar
  3. Benitez, J., Silva, A., Vazquez, R., Noa, M.D., and Hollenberg, C.P. (1989). Secretion and glycosylation of Clostridium thermocellum endoglucanase A encoded by the celA gene in Saccharomyces cerevisiae. Yeast 5, 299–306.CrossRefPubMedGoogle Scholar
  4. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefPubMedGoogle Scholar
  5. Cho, K.M., and Yoo, Y.J. (1999). Novel SSF process form ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, L2612δGC. J. Microbiol. Biotechnol. 9, 340–345Google Scholar
  6. Den Haan, R., Rose, S.H., Lynd, L.R., and van Zyl, W.H. (2007). Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87–94.CrossRefGoogle Scholar
  7. Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., and Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136–5141.CrossRefPubMedGoogle Scholar
  8. Guedon, E., Desvaux, M., and Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68, 53–58.CrossRefPubMedGoogle Scholar
  9. Hahn-Hagerdal, B., Wahlbom, C.F., Gardonyi, M., van Zyl, W.H., Cordero Otero, R.R., and Jonsson, L.J. (2001). Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv. Biochem. Eng. Biotechnol. 73, 53–84.PubMedGoogle Scholar
  10. Hall, J., Hazlewood, G.P., Barker, P.J., and Gilbert, H.J. (1988). Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69, 29–38.CrossRefPubMedGoogle Scholar
  11. Islam, R., Cicek, N., Sparling, R., and Levin, D. (2008). Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl. Microbiol. Biotechnol. 82, 141–148.CrossRefPubMedGoogle Scholar
  12. Katahira, S., Mizuike, A., Fukuda, H., and Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72, 1136–1143.CrossRefPubMedGoogle Scholar
  13. Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Hata, Y., Kondo, A., and Ueda, M. (2008). Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase. J. Biosci. Bioeng. 105, 622–627.CrossRefPubMedGoogle Scholar
  14. Lee, J.H., Kim, K., Park, E.H., Ahn, K., and Lim, C.J. (2007). Expression, characterization and regulation of a Saccharomyces cerevisiae monothiol glutaredoxin (Grx6) gene in Schizosaccharomyces pombe. Mol. Cells 24, 316–322.PubMedGoogle Scholar
  15. Lynd, L.R., and Grethlein, H.E. (1987). Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum. Biotechnol. Bioeng. 29, 92–100.CrossRefPubMedGoogle Scholar
  16. Machida, M., Ohtsuki, I., Fukui, S., and Yamashita, I. (1988). Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 54, 3147–3155.PubMedGoogle Scholar
  17. Murai, T., Ueda, M., Kawaguchi, T., Arai, M., and Tanaka, A. (1998). Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. Environ. Microbiol. 64, 4857–4861.PubMedGoogle Scholar
  18. Okada, H., Sekiya, T., Yokoyama, K., Tohda, H., Kumagai, H., and Morikawa, Y. (1998). Efficient secretion of Trichoderma reesei cellobiohydrolase II in Schizosaccharomyces pombe and characterization of its products. Appl. Microbiol. Biotechnol. 49, 301–308.CrossRefPubMedGoogle Scholar
  19. Patni, N.J., and Alexander, J.K. (1971). Utilization of glucose by Clostridium thermocellum: presence of glucokinase and other glycolytic enzymes in cell extracts. J. Bacteriol. 105, 220–225.PubMedGoogle Scholar
  20. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). A Laboratory Manual, 2nd ed., (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory).Google Scholar
  21. Schwarz, W.H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634–649.CrossRefPubMedGoogle Scholar
  22. Schwarz, W.H., Bronnenmeier, K., Grabnitz, F., and Staudenbauer, W.L. (1987). Activity staining of cellulases in polyacrylamide gels containing mixed linkage β-glucans. Anal. Biochem. 164, 72–77.CrossRefPubMedGoogle Scholar
  23. Stagoj, M.N., Comino, A., and Komel, R. (2006). A novel GAL recombinant yeast strain for enhanced protein production. Biomol. Eng. 23, 195–199.CrossRefPubMedGoogle Scholar
  24. Teeri, T.T. (1997). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160–167.CrossRefGoogle Scholar
  25. Tokatlidis, K., Salamitou, S., Beguin, P., Dhurjati, P., and Aubert, J.P. (1991). Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett. 291, 185–188.CrossRefPubMedGoogle Scholar
  26. Van Maris, A.J., Abbott, D.A., Bellissimi, E., Van den Brink, J., Kuyper, M., Luttik, M.A., Wisselink, H.W., Scheffers, W.A., Van Dijken, J.P., and Pronk, J.T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90, 391–418.CrossRefPubMedGoogle Scholar
  27. Van Rooyen, R., Hahn-Hagerdal, B., La Grange, D.C., and Van Zyl, W.H. (2005). Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120, 284–295.CrossRefPubMedGoogle Scholar
  28. Wood, B.E., and Ingram, L.O. (1992). Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58, 2103–2110.PubMedGoogle Scholar
  29. Wood, T.M., and Bhat, K.M. (1988). Methods for measuring cellulase activities. Methods Enzymol. 160, 87–112.CrossRefGoogle Scholar
  30. Zhou, S., and Ingram, L.O. (2001). Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol. Lett. 23, 1455–1462.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Eugene Jeon
    • 1
  • Jeong-eun Hyeon
    • 1
  • Dong Jin Suh
    • 2
  • Young-Woong Suh
    • 2
  • Seoung Wook Kim
    • 3
  • Kwang Ho Song
    • 3
  • Sung Ok Han
    • 1
  1. 1.School of Life Science and BiotechnologyKorea UniversitySeoulKorea
  2. 2.Clean Energy Research CenterKorea Institute of Science and TechnologySeoulKorea
  3. 3.Department of Chemical Biological EngineeringKorea UniversitySeoulKorea

Personalised recommendations