Molecules and Cells

, Volume 28, Issue 3, pp 149–154 | Cite as

Histone modifications during DNA replication



Faithful and accurate replication of the DNA molecule is essential for eukaryote organisms. Nonetheless, in the last few years it has become evident that inheritance of the chromatin states associated with different regions of the genome is as important as the faithful inheritance of the DNA sequence itself. Such chromatin states are determined by a multitude of factors that act to modify not only the DNA molecule, but also the histone proteins associated with it. For instance, histones can be posttranslationally modified, and it is well established that these posttranslational marks are involved in several essential nuclear processes such as transcription and DNA repair. However, recent evidence indicates that posttranslational modifications of histones might be relevant during DNA replication. Hence, the aim of this review is to describe the most recent publications related to the role of histone posttranslational modifications during DNA replication.


acetylation chromatin remodeling DNA replication histone methylation phosphorylation post translational modification ubiquitination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, K., and Henikoff, S. (2002). The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200.PubMedCrossRefGoogle Scholar
  2. Alexandrow, M.G., and Hamlin, J.L. (2005). Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J. Cell Biol. 168, 875–886.PubMedCrossRefGoogle Scholar
  3. Allis, C.D., Berger, S.L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R., et al. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636.PubMedCrossRefGoogle Scholar
  4. Annunziato, A.T., and Seale, R.L. (1983). Histone deacetylation is required for the maturation of newly replicated chromatin. J. Biol. Chem. 258, 12675–12684.PubMedGoogle Scholar
  5. Balhorn, R., Chalkley, R., and Granner, D. (1972). Lysine-rich histone phosphorylation. A positive correlation with cell replication. Biochemistry 11, 1094–1098.PubMedCrossRefGoogle Scholar
  6. Barman, H.K., Takami, Y., Ono, T., Nishijima, H., Sanematsu, F., Shibahara, K., and Nakayama, T. (2006). Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem. Biophys. Res. Commun. 345, 1547–1557.PubMedCrossRefGoogle Scholar
  7. Barman, H.K., Takami, Y., Nishijima, H., Shibahara, K., Sanematsu, F., and Nakayama, T. (2008). Histone acetyltransferase-1 regulates integrity of cytosolic histone H3-H4 containing complex. Biochem. Biophys. Res. Commun. 373, 624–630.PubMedCrossRefGoogle Scholar
  8. Benson, L.J., Gu, Y., Yakovleva, T., Tong, K., Barrows, C., Strack, C.L., Cook, R.G., Mizzen, C.A., and Annunziato, A.T. (2006). Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J. Biol. Chem. 281, 9287–9296.PubMedCrossRefGoogle Scholar
  9. Bradbury, E.M., Inglis, R.J., and Matthews, H.R. (1974). Control of cell division by very lysine rich histone (F1) phosphorylation. Nature 247, 257–261.PubMedCrossRefGoogle Scholar
  10. Celic, I., Masumoto, H., Griffith, W.P., Meluh, P., Cotter, R.J., Boeke, J.D., and Verreault, A. (2006). The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr. Biol. 16, 1280–1289.PubMedCrossRefGoogle Scholar
  11. Celic, I., Verreault, A., and Boeke, J.D. (2008). Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage. Genetics 179, 1769–1784.PubMedCrossRefGoogle Scholar
  12. Chen, C.C., Carson, J.J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J.K. (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231–243.PubMedCrossRefGoogle Scholar
  13. Chiani, F., Di Felice, F., and Camilloni, G. (2006). SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res. 34, 5426–5437.PubMedCrossRefGoogle Scholar
  14. Collins, S.R., Miller, K.M., Maas, N.L., Roguev, A., Fillingham, J., Chu, C.S., Schuldiner, M., Gebbia, M., Recht, J., Shales, M., et al. (2007). Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810.PubMedCrossRefGoogle Scholar
  15. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W., and Richmond, T.J. (2002). Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113.PubMedCrossRefGoogle Scholar
  16. Deterding, L.J., Bunger, M.K., Banks, G.C., Tomer, K.B., and Archer, T.K. (2008). Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 Isoforms upon CDK inhibitor treatment using mass spectrometry. J. Proteome Res. 7, 2368–2379.PubMedCrossRefGoogle Scholar
  17. Driscoll, R., Hudson, A., and Jackson, S.P. (2007). Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315, 649–652.PubMedCrossRefGoogle Scholar
  18. Duro, E., Vaisica, J.A., Brown, G.W., and Rouse, J. (2008). Budding yeast Mms22 and Mms1 regulate homologous recombination induced by replisome blockage. DNA Repair 7, 811–818.PubMedCrossRefGoogle Scholar
  19. Dutnall, R.N., Tafrov, S.T., Sternglanz, R., and Ramakrishnan, V. (1998). Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94, 427–438.PubMedCrossRefGoogle Scholar
  20. English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E., and Tyler, J.K. (2006). Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508.PubMedCrossRefGoogle Scholar
  21. Falbo, K.B., and Shen, X. (2006). Chromatin remodeling in DNA replication. J. Cell Biochem. 97, 684–689.PubMedCrossRefGoogle Scholar
  22. Fan, Y., Nikitina, T., Zhao, J., Fleury, T.J., Bhattacharyya, R., Bouhassira, E.E., Stein, A., Woodcock, C.L., and Skoultchi, A.I. (2005). Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212.PubMedCrossRefGoogle Scholar
  23. Fang, J., Feng, Q., Ketel, C.S., Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Tempst, P., Simon, J.A., and Zhang, Y. (2002). Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12, 1086–1099.PubMedCrossRefGoogle Scholar
  24. Fisher, D., and Mechali, M. (2003). Vertebrate HoxB gene expression requires DNA replication. EMBO J 22, 3737–3748.PubMedCrossRefGoogle Scholar
  25. Garcia, B.A., Busby, S.A., Barber, C.M., Shabanowitz, J., Allis, C.D., and Hunt, D.F. (2004). Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J. Proteome Res. 3, 1219–1227.PubMedCrossRefGoogle Scholar
  26. Garcia, B.A., Hake, S.B., Diaz, R.L., Kauer, M., Morris, S.A., Recht, J., Shabanowitz, J., Mishra, N., Strahl, B.D., Allis, C.D., et al. (2007). Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem. 282, 7641–7655.PubMedCrossRefGoogle Scholar
  27. Glowczewski, L., Waterborg, J.H., and Berman, J.G. (2004). Yeast chromatin assembly complex 1 protein excludes nonacetylatable forms of histone H4 from chromatin and the nucleus. Mol. Cell. Biol. 24, 10180–10192.PubMedCrossRefGoogle Scholar
  28. Groth, A., Ray-Gallet, D., Quivy, J.P., Lukas, J., Bartek, J., and Almouzni, G. (2005). Human Asf1 regulates the flow of S phase histones during replicational stress. Mol. Cell 17, 301–311.PubMedCrossRefGoogle Scholar
  29. Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007). Chromatin challenges during DNA replication and repair. Cell 128, 721–733.PubMedCrossRefGoogle Scholar
  30. Gurley, L.R., Walters, R.A., and Tobey, R.A. (1975). Sequential phsophorylation of histone subfractions in the Chinese hamster cell cycle. J. Biol. Chem. 250, 3936–3944.PubMedGoogle Scholar
  31. Halmer, L., and Gruss, C. (1996). Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication. Nucleic Acids Res. 24, 1420–1427.PubMedCrossRefGoogle Scholar
  32. Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R.M., and Zhang, Z. (2007a). Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315, 653–655.PubMedCrossRefGoogle Scholar
  33. Han, J., Zhou, H., Li, Z., Xu, R.M., and Zhang, Z. (2007b). Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J. Biol. Chem. 282, 28587–28596.PubMedCrossRefGoogle Scholar
  34. Huang, S., Zhou, H., Katzmann, D., Hochstrasser, M., Atanasova, E., and Zhang, Z. (2005). Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc. Natl. Acad. Sci. USA 102, 13410–13415.PubMedCrossRefGoogle Scholar
  35. Huen, M.S., Sy, S.M., van Deursen, J.M., and Chen, J. (2008). Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J. Biol. Chem. 283, 11073–11077.PubMedCrossRefGoogle Scholar
  36. Hyland, E.M., Cosgrove, M.S., Molina, H., Wang, D., Pandey, A., Cottee, R.J., and Boeke, J.D. (2005). Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell Biol. 25, 10060–10070.PubMedCrossRefGoogle Scholar
  37. Jorgensen, S., Elvers, I., Trelle, M.B., Menzel, T., Eskildsen, M., Jensen, O.N., Helleday, T., Helin, K., and Sorensen, C.S. (2007). The histone methyltransferase SET8 is required for S-phase progression. J. Cell Biol. 179, 1337–1345.PubMedCrossRefGoogle Scholar
  38. Karachentsev, D., Sarma, K., Reinberg, D., and Steward, R. (2005). PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19, 431–435.PubMedCrossRefGoogle Scholar
  39. Kim, H.S., Rhee, D.K., and Jang, Y.K. (2008). Methylations of histone H3 lysine 9 and lysine 36 are functionally linked to DNA replication checkpoint control in fission yeast. Biochem. Biophys. Res. Commun. 368, 419–425.PubMedCrossRefGoogle Scholar
  40. Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008). Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134, 244–255.PubMedCrossRefGoogle Scholar
  41. Lin, C., and Yuan, Y.A. (2008). Structural insights into histone H3 lysine 56 acetylation by Rtt109. Structure 16, 1503–1510.PubMedCrossRefGoogle Scholar
  42. Loyola, A., Bonaldi, T., Roche, D., Imhof, A., and Almouzni, G. (2006). PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316.PubMedCrossRefGoogle Scholar
  43. Lu, Z.H., Sittman, D.B., Brown, D.T., Munshi, R., and Leno, G.H. (1997). Histone H1 modulates DNA replication through multiple pathways in Xenopus egg extract. J. Cell Sci. 110, 2745–2758.PubMedGoogle Scholar
  44. Ma, X.J., Wu, J., Altheim, B.A., Schultz, M.C., and Grunstein, M. (1998). Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc. Natl. Acad. Sci. USA 95, 6693–6698.PubMedCrossRefGoogle Scholar
  45. Maas, N.L., Miller, K.M., DeFazio, L.G., and Toczyski, D.P. (2006). Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23, 109–119.PubMedCrossRefGoogle Scholar
  46. Makowski, A.M., Dutnall, R.N., and Annunziato, A.T. (2001). Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J. Biol. Chem. 276, 43499–43502.PubMedCrossRefGoogle Scholar
  47. Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298.PubMedCrossRefGoogle Scholar
  48. Miller, A., Yang, B., Foster, T., and Kirchmaier, A.L. (2008). Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3. Genetics 179, 793–809.PubMedCrossRefGoogle Scholar
  49. Ozdemir, A., Spicuglia, S., Lasonder, E., Vermeulen, M., Campsteijn, C., Stunnenberg, H.G., and Logie, C. (2005). Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J. Biol. Chem. 280, 25949–25952.PubMedCrossRefGoogle Scholar
  50. Recht, J., Tsubota, T., Tanny, J.C., Diaz, R.L., Berger, J.M., Zhang, X., Garcia, B.A., Shabanowitz, J., Burlingame, A.L., Hunt, D.F., et al. (2006). Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc. Natl. Acad. Sci. USA 103, 6988–6993.PubMedCrossRefGoogle Scholar
  51. Rice, J.C., Nishioka, K., Sarma, K., Steward, R., Reinberg, D., and Allis, C.D. (2002). Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev. 16, 2225–2230.PubMedCrossRefGoogle Scholar
  52. Sarg, B., Helliger, W., Talasz, H., Forg, B., and Lindner, H.H. (2006). Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J. Biol. Chem. 281, 6573–6580.PubMedCrossRefGoogle Scholar
  53. Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262.PubMedCrossRefGoogle Scholar
  54. Shogren-Knaak, M., and Peterson, C.L. (2006). Switching on chromatin: mechanistic role of histone H4-K16 acetylation. Cell Cycle 5, 1361–1365.PubMedGoogle Scholar
  55. Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R., and Peterson, C.L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847.PubMedCrossRefGoogle Scholar
  56. Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T., and Allis, C.D. (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92, 1237–1241.PubMedCrossRefGoogle Scholar
  57. Taddei, A., Roche, D., Sibarita, J.B., Turner, B.M., and Almouzni, G. (1999). Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147, 1153–1166.PubMedCrossRefGoogle Scholar
  58. Tagami, H., Ray-Gallet, D., Almouzni, G., and Nakatani, Y. (2004). Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61.PubMedCrossRefGoogle Scholar
  59. Thiriet, C., and Hayes, J.J. (2008). Linker histone phosphorylation regulates global timing of replication origin firing. J. Biol. Chem. 284, 2823–2329PubMedCrossRefGoogle Scholar
  60. Ulrich, H.D. (2007). Conservation of DNA damage tolerance pathways from yeast to humans. Biochem. Soc. Trans. 35, 1334–1337.PubMedCrossRefGoogle Scholar
  61. Volkel, P., and Angrand, P.O. (2007). The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1–20.PubMedCrossRefGoogle Scholar
  62. Wisniewski, J.R., Zougman, A., and Mann, M. (2008). Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res. 36, 570–577.PubMedCrossRefGoogle Scholar
  63. Xu, F., Zhang, K., and Grunstein, M. (2005). Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375–385.PubMedCrossRefGoogle Scholar
  64. Yang, B., Miller, A., and Kirchmaier, A.L. (2008). HST3/HST4-dependent deacetylation of lysine 56 of histone H3 in silent chromatin. Mol. Biol. Cell 19, 4993–5005.PubMedCrossRefGoogle Scholar
  65. Yasuda, H., Matsumoto, Y., Mita, S., Marunouchi, T., and Yamada, M. (1981). A mouse temperature-sensitive mutant defective in H1 histone phosphorylation is defective in deoxyribonucleic acid synthesis and chromosome condensation. Biochemistry 20, 4414–4419.PubMedCrossRefGoogle Scholar
  66. Zlatanova, J., and Doenecke, D. (1994). Histone H1 zero: a major player in cell differentiation? FASEB J. 8, 1260–1268.PubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  1. 1.Department of Carcinogenesis, Science Park Research DivisionMD Anderson Cancer CenterSmithvilleUSA

Personalised recommendations