Molecules and Cells

, Volume 27, Issue 5, pp 609–613 | Cite as

Antioxidative role of selenoprotein W in oxidant-induced mouse embryonic neuronal cell death

  • Youn Wook Chung
  • Daewon Jeong
  • Ok Jeong Noh
  • Yong Hwan Park
  • Soo Im Kang
  • Min Goo Lee
  • Tae-Hoon Lee
  • Moon Bin Yim
  • Ick Young Kim
Article

Abstract

It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats, and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1 and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced by treatment of H2O2 than control cells. TUNEL assays revealed that H2O2-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal development.

Keywords

antioxidant neuronal cells oxidative stress selenium selenoprotein W 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aachmann, F.L., Fomenko, D.E., Soragni, A., Gladyshev, V.N., and Dikiy, A. (2007). Structural analysis of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J. Biol. Chem. 282, 37036–37044.CrossRefPubMedGoogle Scholar
  2. Allan, C.B., Lacourciere, G.M., and Stadtman, T.C. (1999). Responsiveness of selenoproteins to dietary selenium. Annu. Rev. Nutr. 19, 1–16.CrossRefPubMedGoogle Scholar
  3. Beilstein, M.A., Vendeland, S.C., Barofsky, E., Jensen, O.N., and Whanger, P.D. (1996). Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J. Inorg. Biochem. 61, 117–124.CrossRefPubMedGoogle Scholar
  4. Berry, M.J., Banu, L., Chen, Y.Y., Mandel, S.J., Kieffer, J.D., Harney, J.W., and Larsen, P.R. (1991). Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353, 273–276.CrossRefPubMedGoogle Scholar
  5. Brigelius-Flohe, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 27, 951–965.CrossRefPubMedGoogle Scholar
  6. Burk, R.F., and Hill, K.E. (2005). Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25, 215–235.CrossRefPubMedGoogle Scholar
  7. Cohen, G. (1994). Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann. N Y Acad. Sci. 738, 8–14.PubMedCrossRefGoogle Scholar
  8. Cone, J.E., Del Rio, R.M., Davis, J.N., and Stadtman, T.C. (1976). Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73, 2659–2663.CrossRefPubMedGoogle Scholar
  9. Dikiy, A., Novoselov, S.V., Fomenko, D.E., Sengupta, A., Carlson, B.A., Cerny, R.L., Ginalski, K., Grishin, N.V., Hatfield, D.L., and Gladyshev, V.N. (2007). SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46, 6871–6882.CrossRefPubMedGoogle Scholar
  10. Fagegaltier, D., Hubert, N., Yamada, K., Mizutani, T., Carbon, P., and Krol, A. (2000). Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 19, 4796–4805.CrossRefPubMedGoogle Scholar
  11. Ferreiro, A., Quijano-Roy, S., Pichereau, C., Moghadaszadeh, B., Goemans, N., Bonnemann, C., Jungbluth, H., Straub, V., Villanova, M., Leroy, J.P., et al. (2002). Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am. J. Hum. Genet. 71, 739–749.CrossRefPubMedGoogle Scholar
  12. Flohe, L., Gunzler, W.A., and Schock, H.H. (1973). Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32, 132–134.CrossRefPubMedGoogle Scholar
  13. Grumolato, L., Ghzili, H., Montero-Hadjadje, M., Gasman, S., Lesage, J., Tanguy, Y., Galas, L., Ait-Ali, D., Leprince, J., Guerineau, N.C., et al. (2008). Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca + mobilization and neuroendocrine secretion. FASEB J. 22, 1756–1768.CrossRefPubMedGoogle Scholar
  14. Gu, Q.P., Beilstein, M.A., Barofsky, E., Ream, W., and Whanger, P.D. (1999). Purification, characterization, and glutathione binding to selenoprotein W from monkey muscle. Arch. Biochem. Biophys. 361, 25–33.CrossRefPubMedGoogle Scholar
  15. Gu, Q.P., Sun, Y., Ream, L.W., and Whanger, P.D. (2000). Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol. Cell. Biochem. 204, 49–56.CrossRefPubMedGoogle Scholar
  16. Hill, K.E., McCollum, G.W., Boeglin, M.E., and Burk, R.F. (1997). Thioredoxin reductase activity is decreased by selenium deficiency. Biochem. Biophys. Res. Commun. 234, 293–295.CrossRefPubMedGoogle Scholar
  17. Hubert, N., Walczak, R., Carbon, P., and Krol, A. (1996). A protein binds the selenocysteine insertion element in the 3’-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Res. 24, 464–469.CrossRefPubMedGoogle Scholar
  18. Jeong, D., Kim, T.S., Chung, Y.W., Lee, B.J., and Kim, I.Y. (2002). Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett. 517, 225–228.CrossRefPubMedGoogle Scholar
  19. Jeong, D.W., Kim, E.H., Kim, T.S., Chung, Y.W., Kim, H., and Kim, I.Y. (2004). Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis. Mol. Cells 17, 156–159.PubMedGoogle Scholar
  20. Kim, H.Y., and Gladyshev, V.N. (2007). Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321–329.CrossRefPubMedGoogle Scholar
  21. Korotkov, K.V., Novoselov, S.V., Hatfield, D.L., and Gladyshev, V.N. (2002). Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol. 22, 1402–1411.CrossRefPubMedGoogle Scholar
  22. Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigo, R., and Gladyshev, V.N. (2003). Characterization of mammalian selenoproteomes. Science 300, 1439–1443.CrossRefPubMedGoogle Scholar
  23. Kumaraswamy, E., Korotkov, K.V., Diamond, A.M., Gladyshev, V.N., and Hatfield, D.L. (2002). Genetic and functional analysis of mammalian Sep15 selenoprotein. Methods Enzymol. 347, 187–197.CrossRefPubMedGoogle Scholar
  24. Lee, B.J., Worland, P.J., Davis, J.N., Stadtman, T.C., and Hatfield, D.L. (1989). Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264, 9724–9727.PubMedGoogle Scholar
  25. Loflin, J., Lopez, N., Whanger, P.D., and Kioussi, C. (2006). Selenoprotein W during development and oxidative stress. J. Inorg. Biochem. 100, 1679–1684.CrossRefPubMedGoogle Scholar
  26. Lovell, M.A., Xie, C., Gabbita, S.P., and Markesbery, W.R. (2000). Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. Free Radic. Biol. Med. 28, 418–427.CrossRefPubMedGoogle Scholar
  27. Moghadaszadeh, B., Petit, N., Jaillard, C., Brockington, M., Roy, S.Q., Merlini, L., Romero, N., Estournet, B., Desguerre, I., Chaigne, D., et al. (2001). Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat. Genet. 29, 17–18.CrossRefPubMedGoogle Scholar
  28. Moon, I.S., Cho, S.J., Lee, H., Seog, D.H., Jung, Y.W., Jin, I., and Walikonis, R. (2008). Upregulation by KCl treatment of eukaryotic translation elongation factor 1A (eEF1A) mRNA in the dendrites of cultured rat hippocampal neurons. Mol. Cells 25, 538–544.PubMedGoogle Scholar
  29. Mustacich, D., and Powis, G. (2000). Thioredoxin reductase. Biochem. J. 346 Pt 1, 1–8.CrossRefGoogle Scholar
  30. Niethammer, M., Smith, D.S., Ayala, R., Peng, J., Ko, J., Lee, M.S., Morabito, M., and Tsai, L.H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711.CrossRefPubMedGoogle Scholar
  31. Novoselov, S.V., Kryukov, G.V., Xu, X.M., Carlson, B.A., Hatfield, D.L., and Gladyshev, V.N. (2007). Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 282, 11960–11968.CrossRefPubMedGoogle Scholar
  32. Pellmar, T.C. (1987). Peroxide alters neuronal excitability in the CA1 region of guinea-pig hippocampus in vitro. Neuroscience 23, 447–456.CrossRefPubMedGoogle Scholar
  33. Petit, N., Lescure, A., Rederstorff, M., Krol, A., Moghadaszadeh, B., Wewer, U.M., and Guicheney, P. (2003). Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet. 12, 1045–1053.CrossRefPubMedGoogle Scholar
  34. Rice, M.E. (2000). Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23, 209–216.CrossRefPubMedGoogle Scholar
  35. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590.CrossRefPubMedGoogle Scholar
  36. Schweizer, U., Brauer, A.U., Kohrle, J., Nitsch, R., and Savaskan, N.E. (2004). Selenium and brain function: a poorly recognized liaison. Brain Res. Brain Res. Rev. 45, 164–178.CrossRefPubMedGoogle Scholar
  37. Trepanier, G., Furling, D., Puymirat, J., and Mirault, M.E. (1996). Immunocytochemical localization of seleno-glutathione peroxidase in the adult mouse brain. Neuroscience 75, 231–243.CrossRefPubMedGoogle Scholar
  38. Tujebajeva, R.M., Copeland, P.R., Xu, X.M., Carlson, B.A., Harney, J.W., Driscoll, D.M., Hatfield, D.L., and Berry, M.J. (2000). Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 1, 158–163.CrossRefPubMedGoogle Scholar
  39. Vendeland, S.C., Beilstein, M.A., Chen, C.L., Jensen, O.N., Barofsky, E., and Whanger, P.D. (1993). Purification and properties of selenoprotein W from rat muscle. J. Biol. Chem. 268, 17103–17107.PubMedGoogle Scholar
  40. Yeh, J.Y., Beilstein, M.A., Andrews, J.S., and Whanger, P.D. (1995). Tissue distribution and influence of selenium status on levels of selenoprotein W. FASEB J. 9, 392–396.PubMedGoogle Scholar
  41. Yeh, J.Y., Gu, Q.P., Beilstein, M.A., Forsberg, N.E., and Whanger, P.D. (1997)a. Selenium influences tissue levels of selenoprotein W in sheep. J. Nutr. 127, 394–402.PubMedGoogle Scholar
  42. Yeh, J.Y., Vendeland, S.C., Gu, Q., Butler, J.A., Ou, B.R., and Whanger, P.D. (1997)b. Dietary selenium increases selenoprotein W levels in rat tissues. J. Nutr. 127, 2165–2172.PubMedGoogle Scholar
  43. Zinoni, F., Birkmann, A., Stadtman, T.C., and Bock, A. (1986). Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coii. Proc. Natl. Acad. Sci. USA 83, 4650–4654.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Youn Wook Chung
    • 1
    • 2
  • Daewon Jeong
    • 3
  • Ok Jeong Noh
    • 1
  • Yong Hwan Park
    • 1
  • Soo Im Kang
    • 1
  • Min Goo Lee
    • 1
  • Tae-Hoon Lee
    • 4
  • Moon Bin Yim
    • 2
  • Ick Young Kim
    • 1
  1. 1.Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
  2. 2.Laboratory of Biochemistry, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Department of Microbiology and Aging-associated Disease Research CenterYeungnam University College of MedicineDaeguKorea
  4. 4.School of Dentistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for the Dental SchoolChonnam National UniversityGwangjuKorea
  5. 5.Translational Medicine Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  6. 6.Genetic Disease Research Section, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations