Advertisement

Molecules and Cells

, Volume 27, Issue 5, pp 515–523 | Cite as

Monophyly of the family Desmoscolecidae (Nematoda, Demoscolecida) and Its Phylogenetic position inferred from 18S rDNA sequences

  • Ui Wook Hwang
  • Eun Hwa Choi
  • Dong Sung Kim
  • Wilfrida Decraemer
  • Cheon Young Chang
Article
  • 77 Downloads

Abstract

To infer the monophyletic origin and phylogenetic relationships of the order Desmoscolecida, a unique and puzzling group of mainly free-living marine nematodes, we newly determined nearly complete 18S rDNA sequences for six marine desmoscolecid nematodes belonging to four genera (Desmoscolex, Greeffiella, Tricoma and Paratricoma). Based on the present data and those of 72 nematode species previously reported, the first molecular phylogenetic analysis focusing on Desmoscolecida was done by using neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods. All four resultant trees consistently and strongly supported that the family Desmoscolecidae forms a monophyletic group with very high node confidence values. The monophyletic clade of desmocolecid nematodes was placed as a sister group of the clade including some members of Monhysterida and Araeolaimida, Cyartonema elegans (Cyartonematidae) and Terschellingia longicaudata (Linhomoeidae) in all the analyses. However, the present phylogenetic trees do not show any direct attraction between the families Desmoscolecidae and Cyartonematidae. Within the monophyletic clade of the family Desmoscolecidae in all of the present phylogenetic trees, there were consistently observed two distinct sub-groups which correspond to the subfamilies Desmoscolecinae [Greeffiella sp. + Desmoscolex sp.] and Tricominae [Paratricoma sp. + Tricoma sp].

Keywords

18S rDNA Desmoscolecidae molecular phylogeny Nematoda 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleshin, V.V., Kedrova, O.S., Milyutina, I.A., Vladychenskaya, N.S.,and Petrov, N.B. (1998). Relationships among nematodes based on the analysis of 18S rRNA gene sequences: molecular evidence for monophyly of chromadorian and secernentian nematodes. Russ. J. Nematol. 6, 175–184.Google Scholar
  2. Andrássy, I. (1976). Evolution as a Basis for the Systematization of Nematodes (London: Pitman Publishing).Google Scholar
  3. Blaxter, M.L., De Ley, P., Garey, J.R., Liu, L.X., Scheldemann, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., et al. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71–75.CrossRefPubMedGoogle Scholar
  4. Burgess, R. (2001). An improve protocol for separating meiofauna from sediments using colloidal silica sols. Mar. Ecol. Prog. Ser. 274, 161–165.CrossRefGoogle Scholar
  5. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 77, 540–552.Google Scholar
  6. Chitwood, B.G. (1933). A revised classification of the Nematoda. J. Parasitol. 20, 131.Google Scholar
  7. Chitwood, B.G., and Chitwood, M.B. (1950). An Introduction to Nematology, 2nd ed. (Baltimore: Monumental Printing Company).Google Scholar
  8. Cobb, N.A. (1920). One hundred new nemas. Contrib. Sci. Nematol., IX. (Baltimore, USA), pp. 217–343.Google Scholar
  9. Cook, A.A., Bhadury, P., Debenham, N.J., Meldal, B.H.M., Blaxter, M.L., Smerdon, G., Austen, M.C., Lambshead, P.J.D., and Rogers, A.D. (2005). Denaturing gradient gel electrophoresis (DGGE) as a tool for the identification of marine nematodes. Mar. Ecol. Prog. Ser. 297, 103–113.CrossRefGoogle Scholar
  10. De Coninck, L.A.P. (1965). Systématique des Nématodes. Grassé, P.-P. Ed., Traite de Zoologie 4, 1–731.Google Scholar
  11. Decraemer, W. (1977). Origin and evolution of the Desmoscolecida, an aberrant group of nematodes. J. Zool. Syst. Evol. Res. 75, 232–236.Google Scholar
  12. Decraemer, W. (1985). Revision and phylogenetic systematics of the Desmoscolecida (Nematoda). Hydrobiologia 720, 259–283.CrossRefGoogle Scholar
  13. Decraemer, W. (1996). New information on the ultrastructure of the lip region in the genus Desmoscolex and description of Desmoscolex (Desmoscolex) parvospiculatus sp. n. (Nemata: Desmoscolecida) from Papua New Guinea. Nematologica 42, 9–23.Google Scholar
  14. Decraemer, W., and Smol, N. (2006). Orders Chromadorida, Desmodorida and Desmoscolecida. In Freshwater Nematodes, E. Abebe, I. Andrassy, and W. Traunspurger, eds. (CABI Publishing), pp. 555–573.Google Scholar
  15. De Ley, P., and Blaxter, M.L. (2002). Systematic position and phylogeny. In The Biology of Nematodes, D. Lee, ed. (Harwood Academic Publishers), pp. 1–30.Google Scholar
  16. De Ley, P., and Blaxter, M.L. (2004). A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. In Nematology Monographs and Perspectives 2, R. Cook, and D.J. Hunt, eds. (Brill), pp. 633–653.Google Scholar
  17. De Ley, P., De Ley, I.T., Morris, K., Abebe, E., Mundo-Ocampo, M., Yoder, M., Heras, J., Waumann, D., Rocha-Olivares, A., Jay Burr, A.H., et al. (2005). An integrated approach to fast and informative morphological vouchering of nematodes for appli-cations in molecular barcoding. Philos. Trans. R. Soc. Lond., B Biol. Sci. 360, 1945–1958.CrossRefGoogle Scholar
  18. De Ley, P., Decraemer, W., and Abebe E. (2006). Introduction: summary of present knowledge and research addressing the ecology and taxonomy of freshwater nematodes. In Freshwater Nematodes, E. Abebe, I. Andrassy, and W. Traunspurger, eds. (CABI Publishing), pp. 3–30.Google Scholar
  19. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.CrossRefPubMedGoogle Scholar
  20. Filipjev, I.N. (1918). Free-living marine nematodes of the Sevastopol area. Transactions of the Zoological Laboratory and the Sevastopol Biological Station of the Russian Academy of Sciences Series II No. 4 (Issue I and II) (Translated from Russian).Google Scholar
  21. Filipjev, I.N. (1921). Free-living marine nematodes of the Sevastopol area. Trudy Osob. Zool. Lab. Sebastop. Biol. Sta. Series II 4, 351–614.Google Scholar
  22. Filipjev, I.N. (1929). Les nematodes libres de la baie de la neva et de l’extréméte orientale de Golfe de Finlande. Première partie. Arch. Hydrobiol. 20, 637–699.Google Scholar
  23. Freudenhammer, I. (1975). Desmoscolecida aus der Iberichen Tiefsee, zugleich eine Revision deiser Nematoden-ordnung. “Meteor” Forschungsschiffe-Ergebnisse 20, 1–65.Google Scholar
  24. Gerlach, S.A., and Riemann, F. (1973; 1974). The Bremerhaven checklist of aquatic nematodes. A catalogue of Nematoda - Adenophorea excluding the Dorylaimida. Veröffentlichungen des Institutes für Meeresforschung in Bremerhaven, Sonderdruck 4, 1–404 (Part I., 1973), 405–734 (Part II, 1974).Google Scholar
  25. Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J., and Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23, 1792–1800.CrossRefPubMedGoogle Scholar
  26. Holterman, M., Holovachov, O., van den Elsen, S., van Megen, H., Bongers, T., Bakker, J., and Helder, J. (2008). Small subunit ribosomal DNA-based phylogeny of basal Chromadoria (Nematoda) suggests that transitions from marine to terrestrial habitats (and vice verse) require relatively simple adaptations. Mol. Phylogenet. Evol. 48, 758–763.CrossRefPubMedGoogle Scholar
  27. Kampfer, S., Sturmbauer, C., and Ott, J. (1998). Phylogenetic analysis of rDNA sequences from adenophorean nematodes and implications for the Adenophorea-Secernentea controversy. Invertebr. Biol. 777, 29–36.CrossRefGoogle Scholar
  28. Kristensen, R.M. (1989). Marine Tardigrada from the southeastern United States coastal waters I. Paradoxipus orzeliscoides n. gen., n. sp. (Arthrotardigrada: Halechiniscidae). Trans. Am. Micros. Soc. 708, 262–282.CrossRefGoogle Scholar
  29. Litvaitis, M.K., Bates, J.W., Hope, W.D., and Moens, T. (2000). Inferring a classification of the Adenophorea (Nematoda) from nucleotide sequences of the D3 expansion segment (26/28S rDNA). Can. J. Zool. 78, 911–922.CrossRefGoogle Scholar
  30. Lorenzen, S. (1969). Desmoscoleciden (eine Gruppe freilebender Meeresnematoden) aus Küstensalzwiesen. Veröff. Inst. Meeresforsch. Bremerh. 72, 231–265.Google Scholar
  31. Lorenzen, S. (1981). Entwurf eines phylogenetischen systems der freilebenden nematoden. Veröffentlichungen des Institut für Meeresforschungen Bremerhaven, Sonderdruck 7, 1–472.Google Scholar
  32. Lorenzen, S. (1994). The phylogenetic systematics of freeliving nematodes (London: The Ray Society).Google Scholar
  33. Maggenti, A.R. (1983). Nematode higher classification as in-fluenced by species and family concepts. In Concepts in Nematode Systematics. The systematics association special volume no. 22, A.R. Stone, H.M. Platt, and L.F. Khalil, eds. (London, UK: Academic Press), pp. 25–40.Google Scholar
  34. Meldal, B.H.M., Debenham, N.J., De Ley, P., De Ley, I.T., Vanfleteren, J.R., Vierstraete, A.R., Bert, W., Borgonie, G., Moens, T., Tyler, P.A., et al. (2007). An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol. Phylogenet. Evol. 42, 622–636.CrossRefPubMedGoogle Scholar
  35. Nelles, L., Fang, B.L., Volckaert, G., Vandenberghe, A., and De Wachter, R. (1984). Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs. Nucleic Acids Res. 72, 8749–8768.CrossRefGoogle Scholar
  36. Platt, H.M., and Warwick, R.M. (1983). Freeliving marine nematodes: Part I British enoplids. (Cambridge University Press).Google Scholar
  37. Posada, D., and Crandall, K.A. (1998). Modeltest: testing the model of DNA substitution. Bioinform. Appl. Notes 74, 817–818.Google Scholar
  38. Rambaut, A. (1996). Se-Al: Sequence Alignment Editor. Available at http://evolve.zoo.ox.ac.uk/.
  39. Rho, H.S., Kim, W., and Chang, C.Y. (2007). Description of two new free-living marine nematode species of the subgenus Desmolorenzenia (Desmoscolecida, genus Desmoscolex) from Korea. J. Nat. His. 47, 313–326.CrossRefGoogle Scholar
  40. Ronquist, F., and Huelsenbeck, J.P. (2003). MrBayes 2: Bayesian phylogenetic inference under mixed models. Bioinformatics 79, 1572–1574.CrossRefGoogle Scholar
  41. Swofford, D.L. (2002). PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4, Sinauer Associates, Sunderland, MA, USA (software program).Google Scholar
  42. Tchesunov, A.V. (1994). On the morphology and systematic position of the family Meyliidae (Nematoda: Chromadoria). Nematologica 40, 369–378.CrossRefGoogle Scholar
  43. Timm, R.W. (1970). A revision of the nematode order Desmoscolecida Filipjev. (1929). Univ. Cali. Public. Zool. 93, 1–99.Google Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Ui Wook Hwang
    • 1
  • Eun Hwa Choi
    • 1
  • Dong Sung Kim
    • 2
  • Wilfrida Decraemer
    • 3
    • 4
  • Cheon Young Chang
    • 5
  1. 1.Department of Biology, Teachers College and Department of Biology, Graduate SchoolKyungpook National UniversityDaeguKorea
  2. 2.Marine Resources Research DepartmentKorea Ocean Research and Development InstituteAnsanKorea
  3. 3.Department of InvertebratesRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  4. 4.Department of BiologyGhent UniversityGhentBelgium
  5. 5.Department of Biological Science, College of Natural SciencesDaegu UniversityGyeongsanKorea

Personalised recommendations