Molecules and Cells

, Volume 27, Issue 4, pp 417–422

Lipoxygenase inhibitors suppressed carrageenan-induced Fos-expression and inflammatory pain responses in the rat

  • Sungjae Yoo
  • Shanshu Han
  • Young Shin Park
  • Jang-Hern Lee
  • Uhtaek Oh
  • Sun Wook Hwang
Article

Abstract

Lipoxygenase (LO) metabolites are generated in inflamed tissues. However, it is unclear whether the inhibition of the LO activity regulates the expression of c-Fos protein, a pain marker in the spinal cord. Here we used a carrageenan-induced inflammation model to examine the role of LO in the development of c-Fos expression. Intradermally injected carrageenan caused elevated number of cells exhibiting Fos-like immunoreactivity (Fos-LI) in the spinal dorsal horn, and decreased the thermal and mechanical threshold in Hargreaves and von Frey tests. Pretreatment with an inhibitor of phospholipase A2, that generates the LO substrate, prior to the carrageenan injection significantly reduced the number of Fos-(+) cells. A general LO inhibitor NDGA, a 5-LO inhibitor AA-861 and a 12-LO inhibitor baicalein also exhibited the similar effects. Moreover, the LO inhibitors suppressed carrageenan-induced thermal and mechanical hyperalgesic behaviors, which inidcates that the changes in Fos expression correlates with those in the nociceptive behaviors in the inflamed rats. LO products are endogenous TRPV1 activators and pretreatment with BCTC, a TRPV1 antagonist inhibited the thermal but not the mechanical hypersensitivity. Overall, our results from the Fos-LI and behavior tests suggest that LO products released from inflamed tissues contribute to nociception during carrageenan-induced inflammation, indicating that the LO pathway is a possible target for modulating inflammatory pain.

Keywords

Fos immunohystochemistry inflammation lipoxygenase pain TRPV1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aley, K.O., and Levine, J.D. (2003). Contribution of 5- and 12-lipoxygenase products to mechanical hyperalgesia induced by PGE2 and epinephrine in the rat. Exp. Brain. Res. 148, 482–487.PubMedGoogle Scholar
  2. Amann, R., Schuligoi, R., Lanz, I., and Peskar, B.A. (1996). Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat. Eur. J. Pharmacol. 306, 89–91.PubMedCrossRefGoogle Scholar
  3. Bullitt, E. (1990). Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol. 296, 517–530.PubMedCrossRefGoogle Scholar
  4. Caterina, M.J., Schumacher, MA, Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824.PubMedCrossRefGoogle Scholar
  5. Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313. CPubMedCrossRefGoogle Scholar
  6. Chuang, H.H., Prescott, E.D., Kong, H., Shields, S., Jordt, S.E., Basbaum, A.I., Chao, M.V., and Julius, D. (2001). Bradykinin and nerve growth factor release the capsaicin receptor from Ptdlns(4,5)P2-mediated inhibition. Nature 411, 957–962.PubMedCrossRefGoogle Scholar
  7. Coggeshall, R.E. (2005). Fos, nociception and the dorsal horn. Prog. Neurobiol. 77, 299–352.PubMedGoogle Scholar
  8. Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., et al. (2000). Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187.PubMedCrossRefGoogle Scholar
  9. Ferreira, J., da Silva, G.L., and Calixto, J.B. (2004). Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 141, 787–794.PubMedCrossRefGoogle Scholar
  10. Funk, C.D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875.PubMedCrossRefGoogle Scholar
  11. Harris, J.A. (1998). Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1–8PubMedCrossRefGoogle Scholar
  12. Honore, P., Buritova, J., and Besson, J.M. (1995). Carrageenin-evoked c-Fos expression in rat lumbar spinal cord: the effects of indomethacin. Eur. J. Pharmacol. 272, 249–259.PubMedCrossRefGoogle Scholar
  13. Huang, S.M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L, Fezza, F., Tognetto, M., Petros, T.J., Krey, J.F., Chu, C.J., et al. (2002). An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400–8405.PubMedCrossRefGoogle Scholar
  14. Hunt, S.P., Pini, A., and Evan, G.. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634.PubMedCrossRefGoogle Scholar
  15. Hwang, S.W., Cho, H., Kwak, J., Lee, S.Y., Kang, C.J., Jung, J., Cho, S., Min, K.H., Suh, Y.G., Kim, D., et al. (2000). Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA 97, 6155–6160.PubMedCrossRefGoogle Scholar
  16. Jain, N.K., Kulkarni, S.K., and Singh, A. (2001). Role of cysteinyl leukotrienes in nociceptive and inflammatory conditions in experimental animals. Eur. J. Pharmacol. 423, 85–92.PubMedCrossRefGoogle Scholar
  17. Jhaveri, M.D., Elmes, S.J., Kendall, DA, and Chapman, V. (2005). Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naive, carrageenan-inflamed and neuropathic rats. Eur. J. Neurosci. 22, 361–370.PubMedCrossRefGoogle Scholar
  18. Kwak, J.Y., Jung, J.Y., Hwang, S.W., Lee, W.T., and Oh, U. (1998). A capsaicin-receptor antagonist, capsazepine, reduces inflammation-induced hyperalgesic responses in the rat: evidence for an endogenous capsaicin-like substance. Neuroscience 86, 619–626.PubMedCrossRefGoogle Scholar
  19. Kwan, K.Y., Allchorne, A.J., Vollrath, M.A., Christensen, A.P., Zhang, D.S., Woolf, C.J., and Corey, D.P. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289.PubMedCrossRefGoogle Scholar
  20. Levine, J.D., Lau, W., Kwait, G., and Goetzl, E.J. (1984). leukotriene B4 produces hyperalgesia that is dependent on polymorphonuclear leukocytes. Science 225, 743–744.PubMedCrossRefGoogle Scholar
  21. Levine, J.D., Lam, D., Taiwo, Y.O., Donatoni, P., and Goetzl, E.J. (1986). Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid. Proc. Nalt. Acad. Sci. USA 83, 5331–5334.CrossRefGoogle Scholar
  22. Martin, H.A., Basbaum, A.I., Kwait, G.C., Goetzl, E.J., and Levine, J.D. (1987). Leukotriene and prostaglandin sensitization of cutaneous high threshold C and A-delta mechanoreceptors in the hairy skin of the rat hindlimbs. Neuroscience 22, 651–659.PubMedCrossRefGoogle Scholar
  23. Martin, H.A., Basbaum, A.I., Goetzl, E.J., and Levine, J.D. (1988). Leukotriene B4 decreases the mechanical thresholds of C and A-delta mechanoreceptors in the hairy skin of the rat. J. Neurophysiol. Neurosci. 60, 438–445.Google Scholar
  24. Menetrey, D., Gannon, A., Levine, J.D., and Basbaum, A.I. (1989). Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J. Comp. Neurol. 285, 177–195.PubMedCrossRefGoogle Scholar
  25. Moqrich, A., Hwang, S.W., Earley, T.J., Petrus, M.J., Murray, A.N., Spencer, K.S., Andahazy, M., Story, G.M., and Patapoutian, A. (2005). Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472.PubMedCrossRefGoogle Scholar
  26. Moriyama, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y., Tominaga, T., Narumiya, S., and Tominaga, M. (2005). Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 1, 3.PubMedCrossRefGoogle Scholar
  27. Na, H.S., Choi, S., Kim, J., Park, J., and Shin, H.S. (2008). Attenuated neuropathic pain in Cav3.1 null mice. Mol. Cells 25, 242–246.PubMedGoogle Scholar
  28. Peskar, B.M., Trautmann, M., Nowak, P., and Perskar, B.A. (1991). Release of 15-hydroxy-5, 8,11,13-eicosatetraenoic acid and cysteinyl-leukotrienes in carrageenan-induced inflammation: effect of nonsteroidal anti-inflammatory drugs. Agents Actions 33, 240–246.PubMedCrossRefGoogle Scholar
  29. Petrus, M., Peier, A.M., Bandell, M., Hwang, S.W., Huynh, T., Olney, N., Jegla, T., and Patapoutian, A. (2007). A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40.PubMedCrossRefGoogle Scholar
  30. Pomonis, J.D., Harrison, J.E., Mark, L, Bristol, D.R., Valenzano, K.J., and Walker, K. (2003). N-(4-Tertiarybutylphenyl)-4-(3-cholor-phyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 306, 387–393.PubMedCrossRefGoogle Scholar
  31. Samad, T.A., Sapirstein, A., and Woolf, C.J. (2002). Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol. Med. 8, 390–396.PubMedCrossRefGoogle Scholar
  32. Shim, W.S., Tak, M.H., Lee, M.H., Kim, M., Kim, M., Koo, J.Y., Lee, C.H., Kim, M., and Oh, U. (2007). TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331–2337.PubMedCrossRefGoogle Scholar
  33. Shin, J., Cho, H., Hwang, S.W., Jung, J., Shin, C.Y., Lee, S.Y., Kim, S.H., Lee, M.G., Choi, Y.H., Kim, J., etal. (2002). Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA 99, 10150–10155.PubMedCrossRefGoogle Scholar
  34. Singh, V.P., Patil, C.S., and Kulkarni, S.K. (2004). Effect of zileuton in radicular pain induced by herniated nucleus pulposus in rats. Inflammopharmacology 12, 189–195.PubMedCrossRefGoogle Scholar
  35. Singh, V.P., Patil, C.S., and Kulkarni, S.K. (2005). Differential effect of zileuton, a 5-lipoxygenase inhibitor, against nociceptive paradigms in mice and rats. Pharmacol. Biochem. Behav. 81, 433–439.PubMedCrossRefGoogle Scholar
  36. Szabo, A., Helyes, Z., Sandor, K., Bite, A., Pinter, E., Nemeth, J., Banvolgyi, A., Bolcskei, K., Elekes, K., and Szolcsanyi, J. (2005). Role of transient receptor potential vanilloid 1 receptors in adjuvant-induced chronic arthritis: in vivo study using gene-deficient mice. J. Pharmacol. Exp. Ther. 314, 111–119.PubMedCrossRefGoogle Scholar
  37. Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D. (1998). The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543.PubMedCrossRefGoogle Scholar
  38. Tonussi, C.R., and Ferreira, S.H. (1999). Tumor necrosis factor-alpha mediates carrageenan-induced knee-joint incapacitation and also triggers overt nociception in previously inflamed rat knee-joint. Pain 82, 81–87.PubMedCrossRefGoogle Scholar
  39. Uchida, K. (2008). A lipid-derived endogenous inducer of COX-2: a bridge between inflammation and oxidative stress. Mol. Cells 25, 347–351.PubMedGoogle Scholar
  40. Vane, J., and Botting, R. (1987). Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J. 1, 89–96.PubMedGoogle Scholar
  41. Vane, J.R., Bakhle, Y.S., and Botting, R.M. (1998). Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97–120.PubMedCrossRefGoogle Scholar
  42. Walker, K.M., Urban, L, Medhurst, S.J., Patel, S., Panesar, M., Fox, A.J., and Mclntyre, P. (2003). The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 304, 56–62.PubMedCrossRefGoogle Scholar
  43. Zygmunt, P.M., Petersson, J., Andersson, DA., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D., and Hogestatt, E.D. (1999). Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  • Sungjae Yoo
    • 1
  • Shanshu Han
    • 1
  • Young Shin Park
    • 2
  • Jang-Hern Lee
    • 3
  • Uhtaek Oh
    • 2
  • Sun Wook Hwang
    • 1
  1. 1.Korea University Graduate School of MedicineSeoulKorea
  2. 2.Seoul National University College of PharmacySeoulKorea
  3. 3.Department of Veterinary Physiology, College of Veterinary Medicine and Brain Korea 21 Program for Veterinary ScienceSeoul National UniversitySeoulKorea

Personalised recommendations