Molecules and Cells

, 27:205 | Cite as

Localization of 5S and 25S rRNA genes on Somatic and meiotic chromosomes in Capsicum species of chili pepper

  • Jin-Kyung Kwon
  • Byung-Dong KimEmail author


The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, an-nuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that ‘CM334’ of annuum had three loci and ‘tabasco’ of frutescens had one locus. ‘CM334’-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from ‘CM334’ plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili.


BAC fiber-FISH FISH rDNA pachytene 


  1. Cai, Q., Zhang, D., Lui, Z.I., and Wang, X.R. (2006). Chromosomal localization of 5S and 18S rDNA in five species of subgenes Strobus and their implications for genome evolution of Pinus. Ann. Bot. 97, 715–722.PubMedCrossRefGoogle Scholar
  2. De Jong, H. (1998). High resolution FISH reveals the molecular and chromosomal organization of repetitive sequences in tomato. Cytogenet. Cell Genet. 81, 104.Google Scholar
  3. Franze, P.F., Alonso-Blanco, C., Liharska, T.B., Peeters, A.J.M., Zabel, P., and De Jong, H. (1996a). High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J. 9, 421–430.CrossRefGoogle Scholar
  4. Franze, P.F., Stam, M., Montijn, B., Hoopen, R.T., Weigant, J., Kooter, J.M., Oud, O., and Nanninga, N. (1996b). Detection of single-copy genes and chromosome rearrangements in Petunia Irybrida by fluorescence in situ hybridization. Plant J. 9, 767–774.CrossRefGoogle Scholar
  5. Hanson, R.E., Islm-Faridi, M.N., Percival, E.A., Crane, C.F., Ji, Y., McKnight, T.D., Stelly, D.M., and Price, H.J. (1996). Distribution of 5S and 18-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 705, 55–61.CrossRefGoogle Scholar
  6. Hasterok, R., Wolny, E., Hosiawa, M., Kowalczyk, M., Kulak-Ksiazczyk, S., Ksiazczyk, T., Heneen, W.K., and Maluszynska, J. (2006). Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 97, 205–216.PubMedCrossRefGoogle Scholar
  7. Kamisugi, Y., Nakayama, S., Nakajima, R., Ohtsubo, H., Ohtsubo, E., and Fukui, K. (1994). Physical mapping of the 5S ribosomal RNA genes on rice chromosome 11. Mol. Gen. Genet. 245, 13–138.CrossRefGoogle Scholar
  8. Kang, B.-C., Yu, J.W., Lee, M.H., and Kim, B.-D. (1997). Applicability of AFLP on hot pepper genetic analysis. J. Kor. Soc. Hort. Sei. 38, 698–703.Google Scholar
  9. Kang, S-K., Lee, D.H, An, H-J., Park, J-H., Yun, S-H., Moon, Y-E., Bang, J-W., Hur Y.K., and Koo, D-H. (2008). Extensive chromosomal polymorphism revealed by ribosomal DNA and satellite DNA loci in 13 Citrus species. Mol. Cells 26, 319–322.PubMedGoogle Scholar
  10. Lee, H-L, Bae, l-H, Park, S-W., Kim, H-J., Min, W-K., Han, J-H., Kim, K-T., and Kim, B-D. (2009). Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol. Cells 27, 21–37.PubMedCrossRefGoogle Scholar
  11. Maluszynska, J., and Heslop-Harrison, J.S. (1993). Physical mapping of rDNA loci in Brassica species. Genome 36, 774–781.PubMedCrossRefGoogle Scholar
  12. Moscone, E.A., Armando, M.L., and Friedrich, E. (1993). Giemsa C-banded karyotypes in Capsicum (Solanaceae). Pl Syst. Evol. 186, 213–229.CrossRefGoogle Scholar
  13. Moscone, E.A., Armando, M.L., and Friedrich, E. (1996). Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). PI Syst. Evol. 202, 37–63.CrossRefGoogle Scholar
  14. Moscone, E.A., Monika, B., Irma, E., Johann, G., Friedrich, E., and Armando, T.H. (2003). Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann. Bot. 92, 21–29.PubMedCrossRefGoogle Scholar
  15. Murata, M., Heslop-Harrison, J.S., and Motoyoshi, F. (1997). Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J. 72, 31–37.CrossRefGoogle Scholar
  16. Ohmido, N., and Fukui, K. (1996). A new manual for fluorescence in situ hybridization (FISH) in plant chromosomes. Rice Genet. Newsl. 13, 89–96.Google Scholar
  17. Ohmido, N., Akiyama, Y., and Fukui, K. (1998). Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol. Biol. 38, 1043–1052.PubMedCrossRefGoogle Scholar
  18. Tanksley, S.D., Bernatzky, R., Lapitan, N.L., and Prince, J.P. (1988). Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA 85, 6419–6423.PubMedCrossRefGoogle Scholar
  19. Park, Y.K., Kim, B.D., Kim, B.S., Kim, K., Armstrong, C, and Kim, N.S. (1999). Karyotyping of the chromosomes and physical mapping of the 5S rRNA and 18S–26S rRNA gene families in five different species in Capsicum. Genes Genet. Syst. 74, 149–157.CrossRefGoogle Scholar
  20. Park, Y.K., Park, K.C., Park, C.H., and Kim, N.S. (2000). Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Mol. Cells 10, 18–24.PubMedCrossRefGoogle Scholar
  21. Pedrosa-Harand, A., de Almeide, C.C., Mosiolek, M., Blair, M.W., Schweizer, D., and Guerra, M. (2006). Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor. Appl. Genet. 772, 924–933.CrossRefGoogle Scholar
  22. Peterson, D.G., Peterson, W.R., and Stack, S.M. (1998). Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome 41, 346–356.CrossRefGoogle Scholar
  23. Schondelmaier, J., Schmidt, T., Heslop-Harrison, J.S., and Jung, C. (1997). Genetic and chromosomal localization of the 5S rDNA locus in sugar beet (Beta vulgaris L). Genome 40, 171–175.PubMedCrossRefGoogle Scholar
  24. Yi, G., Lee, J.M., Lee, S., Choi, D., and Kim, B-D. (2006). Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114, 113–130.PubMedCrossRefGoogle Scholar
  25. Yoo, E.Y., Kim, S., Kim, Y.H., Lee, C.J., and Kim, B.-D. (2003). Construction of a deep coverage BAC library from Capsicum annuum, ‘CM334’. Theor. Appl. Genet. 107, 540–543.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  1. 1.Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
  2. 2.Department of Plant Science, and Research Institute for Agriculture and Life SciencesSeoul National UniversitySeoulKorea

Personalised recommendations