Molecules and Cells

, Volume 27, Issue 2, pp 135–142 | Cite as

Ab ovo or de novo? Mechanisms of centriole duplication



The centrosome, an organelle comprising centrioles and associated pericentriolar material, is the major microtubule organizing center in animal cells. For the cell to form a bipolar mitotic spindle and ensure proper chromosome segregation at the end of each cell cycle, it is paramount that the cell contains two and only two centrosomes. Because the number of centrosomes in the cell is determined by the number of centrioles, cells have evolved elaborate mechanisms to control centriole biogenesis and to tightly coordinate this process with DNA replication. Here we review key proteins involved in centriole assembly, compare two major modes of centriole biogenesis, and discuss the mechanisms that ensure stringency of centriole number.


centriole centrosome duplication de novo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvey, P.L. (1985). An investigation of the centriole cycle using 3T3 and CHO cells. J. Cell Sci. 78, 147–162.PubMedGoogle Scholar
  2. Balczon, R., Bao, L., Zimmer, W.E., Brown, K., Zinkowski, R.P., and Brinkley, B.R. (1995). Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105–115.PubMedCrossRefGoogle Scholar
  3. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., and Kaldis, P. (2003). Cdk2 Knockout mice are viable. Curr. Biol. 13, 1775–1785.PubMedCrossRefGoogle Scholar
  4. Bettencourt-Dias, M., and Carvalho-Santos, Z. (2008). Double life of centrioles: CP110 in the spotlight. Trends. Cell Biol. 18, 8–11.PubMedCrossRefGoogle Scholar
  5. Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L, Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., and Glover, D.M. (2005). Sak/Plk4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207.PubMedCrossRefGoogle Scholar
  6. Bisgrove, B.W., and Yost, H.J. (2006). The roles of cilia in developmental disorders and disease. Development 133, 4131–4143.PubMedCrossRefGoogle Scholar
  7. Blow, J.J., and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6, 476–486.PubMedCrossRefGoogle Scholar
  8. Bobinnec, Y., Khodjakov, A, Mir, L.M., Rieder, C.L., Edde, B., and Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589.PubMedCrossRefGoogle Scholar
  9. Chen, Z., Indjeian, V.B., McManus, M., Wang, L., and Dynlacht, B.D. (2002). CP110, a cell cycle-dependent Cdk substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339–350.PubMedCrossRefGoogle Scholar
  10. Chretien, D., Buendia, B., Fuller, S.D., and Karsenti, E. (1997). Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117–133.PubMedCrossRefGoogle Scholar
  11. Dammermann, A., Muller-Reichert, T., Pelletier, L., Habermann, B., Desai, A., and Oegema, K. (2004). Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815–829.PubMedCrossRefGoogle Scholar
  12. Dammermann, A., Maddox, P.S., Desai, A., and Oegema, K. (2008). SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the γ-tubulin-mediated addition of centriolar microtubules. J. Cell Biol. 180, 771–785.PubMedCrossRefGoogle Scholar
  13. Dawe, H.R., Farr, H., and Gull, K. (2007). Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci 120, 7–15.PubMedCrossRefGoogle Scholar
  14. Delattre, M., and Gonczy, P. (2004). The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619–1630.PubMedCrossRefGoogle Scholar
  15. Delattre, M., Canard, C., and Gonczy, P. (2006). Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844–1849.PubMedCrossRefGoogle Scholar
  16. Dippell, R. (1968). The development of basal bodies in Paramecium. Proc. Natl. Acad. Sci. USA 61, 461–468.PubMedCrossRefGoogle Scholar
  17. Dirksen, E.R. (1991). Centriole and basal body formation during ciliogenesis revisited. Biol. Cell 72, 31–38.PubMedCrossRefGoogle Scholar
  18. Dix, C.I., and Raff, J.W. (2007). Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr. Biol. 17, 1759–1764.Google Scholar
  19. Duensing, S., and Munger, K. (2003). Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J. Virol. 77, 12331–12335.PubMedCrossRefGoogle Scholar
  20. Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A., and Duensing, S. (2007). Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26, 6280–6288.PubMedCrossRefGoogle Scholar
  21. Dutcher, S.K. (2007). Finding treasures in frozen cells: new centriole intermediates. Bioessays 29, 630–634.PubMedCrossRefGoogle Scholar
  22. Fisk, H.A., and Winey, M. (2001). The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106, 95–104.PubMedCrossRefGoogle Scholar
  23. Fisk, H.A, Mattison, O.P., and Winey, M. (2003). Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc. Natl. Acad. Sci. USA 100, 14875–14880.PubMedCrossRefGoogle Scholar
  24. Fuller, S.D., Gowen, B.E., Reinsch, S., Sawyer, A., Buendia, B., Wepf, R., and Karsenti, E. (1995). The core of the mammalian centriole contains γ-tubulin. Curr. Biol. 5, 1384–1393.PubMedCrossRefGoogle Scholar
  25. Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J.E., Bhattacharya, S., Rideout, W.M., Bronson, R.T., Gardner, H., and Sicinski, P. (2003). Cyclin E ablation in the mouse. Cell 114, 431–443.PubMedCrossRefGoogle Scholar
  26. Hinchcliffe, E.H., and Sluder, G. (2001a). It takes two to tango: understanding how centrosome duplication is regulated through-houtthe cell cycle. Genes Dev. 15, 1167–1181.PubMedCrossRefGoogle Scholar
  27. Hinchcliffe, E.H., and Sluder, G. (2001b). Centrosome duplication: Three kinases come up a winner! Curr. Biol. 11, R698–R701.PubMedCrossRefGoogle Scholar
  28. Hiraki, M., Nakazawa, Y., Kamiya, R., and Hirono, M. (2007). Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol. 17, 1778–1783.PubMedCrossRefGoogle Scholar
  29. Hook, S.S., Lin, J.J., and Dutta, A. (2007). Mechanisms to control re-replication and implications for cancer. Curr. Opin. Cell Biol. 19, 663–671.PubMedCrossRefGoogle Scholar
  30. Jones, M.H., and Winey, M. (2006). Centrosome duplication: is asymmetry the clue? Curr. Biol. 16, R808–810.PubMedCrossRefGoogle Scholar
  31. Kasbek, O., Yang, O.H., Yusof, A.M., Chapman, H.M., Winey, M., and Fisk, H.A. (2007). Preventing the degradation of Mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol. Biol. Cell 18, 4457–4469.PubMedCrossRefGoogle Scholar
  32. Kemp, C.A., Kopish, K.R., Zipperlen, P., Ahringer, J., and O’Connell, K.F. (2004). Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511–523.PubMedCrossRefGoogle Scholar
  33. Keryer, G., Ris, H., and Borisy, G.G. (1984). Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J. Cell Biol. 98, 2222–2229.PubMedCrossRefGoogle Scholar
  34. Khodjakov, A., Rieder, C.L., Sluder, G., Cassels, G., Sibon, O., and Wang, C.L. (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171–1181.PubMedCrossRefGoogle Scholar
  35. Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S., and Hyman, A. A. (2003). SAS-4 Is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587.PubMedCrossRefGoogle Scholar
  36. Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y.D., and Nigg, E.A. (2007). Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202.PubMedCrossRefGoogle Scholar
  37. Kuriyama, R., and Borisy, G.G. (1981). Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814–821.PubMedCrossRefGoogle Scholar
  38. Kuriyama, R., and Borisy, G.G. (1983). Cytasters induced within unfertilized sea-urchin eggs. J. Cell Sci. 61, 175–189.PubMedGoogle Scholar
  39. La Terra, S., English, C.N., Hergert, P., McEwen, B.F., Sluder, G., and Khodjakov, A. (2005). The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713–722.PubMedCrossRefGoogle Scholar
  40. Leidel, S., Delattre, M., Cerutti, L, Baumer, K., and Gonczy, P. (2005). SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7, 115–125.PubMedCrossRefGoogle Scholar
  41. Loncarek, J., Hergert, P., Magidson, V., and Khodjakov, A. (2008). Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322–328.PubMedCrossRefGoogle Scholar
  42. Mahowald, A.P., Caulton, J.H., Edwards, M.K., and Floyd, A.D. (1979). Loss of centrioles and polypioidization in follicle cells of Drosophila melanogaster. Exp. Cell Res. 118, 404–410.PubMedCrossRefGoogle Scholar
  43. Manandhar, G., Schatten, H., and Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72, 2–13.PubMedCrossRefGoogle Scholar
  44. Marshall, W.F. (2007). Centriole assembly: the origin of nine-ness. Cur. Biol. 17, R1057–R1059.CrossRefGoogle Scholar
  45. Marshall, W.F. (2008). The cell biological basis of ciliary disease. J. Cell Biol. 180, 17–21.PubMedCrossRefGoogle Scholar
  46. Matsumoto, Y., and Maller, J.L. (2004). A centrosomal localization signal in cyclin E required for cdk2-independent S phase entry. Science 306, 885–888.PubMedCrossRefGoogle Scholar
  47. Matsumoto, Y., Hayashi, K., and Nishida, E. (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429–432.PubMedCrossRefGoogle Scholar
  48. Mazia D. (1987). The multiplicity of the mitotic centers and the time-course of their duplication and separation. Biophys. Biochem. Cytol. 7, 1–20.CrossRefGoogle Scholar
  49. Meraldi, P., Lukas, J., Fry, A.M., Bartek, J., and Nigg, E.A. (1999). Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1, 88–93.PubMedCrossRefGoogle Scholar
  50. Moritz, M., Braunfeld, M.B., Guenebaut, V., Heuser, J., and Agard, D.A. (2000). Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365–370.PubMedCrossRefGoogle Scholar
  51. Moudjou, M., Bordes, N., Paintrand, M., and Bornens, M. (1996). γ-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell Sci. 109, 875–887.PubMedGoogle Scholar
  52. Nakazawa, Y., Hiraki, M., Kamiya, R., and Hirono, M. (2007). SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169–2174.PubMedCrossRefGoogle Scholar
  53. Nigg, E.A. (2007). Centriole duplication: of rules and licenses. Trends Cell Biol. 17, 215–221.PubMedCrossRefGoogle Scholar
  54. O’Connell, K.F., Caron, C., Kopish, K.R., Hurd, D.D., Kemphues, K.J., Li, Y., and White, J.G. (2001). The C. ielegans Zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558.PubMedCrossRefGoogle Scholar
  55. O’Toole, E.T., Giddings, T.H., Mcintosh, J.R., and Dutcher, S.K. (2003). Three-dimensional organization of basal bodies from wild-type and δ-tubulin deletion strains of Chlamydomonas reinhardtii. Mol. Biol. Cell 14, 2999–3012.PubMedCrossRefGoogle Scholar
  56. Okuda, M., Horn, H.F., Tarapore, P., Tokuyama, Y., Smulian, A.G., Chan, P.K., Knudsen, E.S., Hofmann, I.A., Snyder, J.D., Bove, K.E., et al. (2000). Nucleophosmin/B23 is a target of CDK2/Cy-clin E in centrosome duplication. Cell 103, 127–140.PubMedCrossRefGoogle Scholar
  57. Peel, N., Stevens, N.R., Basto, R., and Raff, J.W. (2007). Overex-pressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834–843.PubMedCrossRefGoogle Scholar
  58. Pelletier, L., Ozlu, N., Hannak, E., Cowan, C., Habermann, B., Ruer, M., Muller-Reichert, T., and Hyman, A.A. (2004). The Caenor-habditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863–873.PubMedCrossRefGoogle Scholar
  59. Pelletier, L., Toole, E., Schwager, A, Hyman, A.A, and Muller-Reichert, T. (2006). Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623.PubMedCrossRefGoogle Scholar
  60. Piel, M., Nordberg, J., Euteneuer, U., and Bornens, M. (2001). Cen-trosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553PubMedCrossRefGoogle Scholar
  61. Riparbelli, M.G., and Callaini, G. (2003). Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev. Biol. 260, 298–313.PubMedCrossRefGoogle Scholar
  62. Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M., and Bettencourt-Dias, M. (2007a). Revisiting the role of the mother centriole in centriole biogenesis. Science 316, 1046–1050.PubMedCrossRefGoogle Scholar
  63. Rodrigues-Martins, A., Bettencourt-Dias, M.n., Riparbelli, M., Ferreira, C, Ferreira, I., Callaini, G., and Glover, D.M. (2007b). DSAS-6 Organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 17, 1465–1472.PubMedCrossRefGoogle Scholar
  64. Salisbury, J.L., Suino, K.M., Busby, R., and Springett, M. (2002). Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292.PubMedCrossRefGoogle Scholar
  65. Silflow, C.D., Liu, B., LaVoie, M., Richardson, E.A., and Palevitz, B.A (1999). γ-Tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. Cell Motil. Cytoskeleton 42, 285–297.PubMedCrossRefGoogle Scholar
  66. Sluder, G., and Begg, D.A. (1985). Experimental analysis of the reproduction of spindle poles. J. Cell Sci. 76, 35–51.PubMedGoogle Scholar
  67. Sorokin, S.P. (1968). Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230.PubMedGoogle Scholar
  68. Spektor, A., Tsang, W.Y., Khoo, D., and Dynlacht, B.D. (2007). Cep97 and CP110 Suppress a cilia assembly program. Cell 130, 678–690.PubMedCrossRefGoogle Scholar
  69. Strnad, P., and Gönczy, P. (2008). Mechanisms of procentriole formation. Trends. Cell Biol. 18, 389–396.PubMedCrossRefGoogle Scholar
  70. Strnad, P., Leidel, S., Vinogradova, T., Euteneuer, U., Khodjakov, A., and Gonczy, P. (2007). Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13, 203–213.PubMedCrossRefGoogle Scholar
  71. Stucke, V.M., Sillje, H.H., Arnaud, L, and Nigg, E.A. (2002). Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723–1732.PubMedCrossRefGoogle Scholar
  72. Szollosy, D., Calarco, P., and Donahue, R.P. (1972). Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541.Google Scholar
  73. Szöllosi, D., and Ozil, J.P. (1991). De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol. Cell 72, 61–66.PubMedCrossRefGoogle Scholar
  74. Tokuyama, Y., Horn, H.F., Kawamura, K., Tarapore, P., and Fukasawa, K. (2001). Specific phosphorylation of nucleo-phosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 276, 21529–21537.PubMedCrossRefGoogle Scholar
  75. Tsou, M.F.B., and Stearns, T. (2006a). Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74–78.PubMedCrossRefGoogle Scholar
  76. Tsou, M.F.B., and Stearns, T. (2006b). Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951.PubMedCrossRefGoogle Scholar
  77. Uetake, Y., Loncarek, J., Nordberg, J.J., English, C.N., La Terra, S., Khodjakov, A., and Sluder, G. (2007). Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176, 173–182.PubMedCrossRefGoogle Scholar
  78. Vladar, E.K., and Stearns, T. (2007). Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 178, 31–42.PubMedCrossRefGoogle Scholar
  79. Vorobjev, I.A., and Chentsov, Y. (1982). Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938–949.PubMedCrossRefGoogle Scholar
  80. Winey, M., Goetsch, L., Baum, P., and Byers, B. (1991). Mps1 and Mps2: novel yeast genes defining distinct steps of spindle pole body duplication. J. Cell Biol. 114, 745–754.PubMedCrossRefGoogle Scholar
  81. Winkles, J.A., and Alberts, G.F. (2005). Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24, 260–266.PubMedCrossRefGoogle Scholar
  82. Wong, C., and Stearns, T. (2003). Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 5, 539–544.PubMedCrossRefGoogle Scholar
  83. Young, A., Dictenberg, J.B., Purohit, A., Tuft, R., and Doxsey, S.J. (2000). Cytoplasmic dynein-mediated assembly of pericentrin and γ-tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056.PubMedGoogle Scholar
  84. Zhu, F., Lawo, S., Bird, A, Pinchev, D., Ralph, A., Richter, C, Muller-Reichert, T., Kittler, R., Hyman, A.A, and Pelletier, L (2008). The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136–141.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2009

Authors and Affiliations

  1. 1.Division of Translational Medicine, Wadsworth CenterNew York State Department of HealthAlbanyUSA

Personalised recommendations