Virtual Reality

, Volume 22, Issue 3, pp 221–234 | Cite as

A computational model of perceptual saliency for 3D objects in virtual environments

  • Graciela Lara
  • Angélica De Antonio
  • Adriana PeñaEmail author
Original Article


When giving directions to the location of an object, people typically use other attractive objects as reference, that is, reference objects. With the aim to select proper reference objects, useful for locating a target object within a virtual environment (VE), a computational model to identify perceptual saliency is presented. Based on the object’s features with the major stimulus for the human visual system, three basic features of a 3D object (i.e., color, size, and shape) are individually evaluated and then combined to get a degree of saliency for each 3D object in a virtual scenario. An experiment was conducted to evaluate the extent to which the proposed measure of saliency matches with the people’s subjective perception of saliency; the results showed a good performance of this computational model.


Reference object Perceptual salience Virtual environment 3D object’s features extraction 



Graciela Lara holds a PROMEP scholarship in partnership with the UDG (UDG-685), Mexico. We also thank the students Adrián Calle Murillo, Roberto Mendoza Vasquez, and Álvaro Iturmendi Muñoz for their help in the implementation of the metric and the experimental software application and materials.


  1. Caduff D, Sabine T (2008) On the assessment of landmark salience for human navigation. Springer. Cognit Process 9(4):249–267CrossRefGoogle Scholar
  2. Choungourian A (1968) Color preferences and cultural variation. Percept Mot Skills 26(3_suppl):1203–1206CrossRefGoogle Scholar
  3. Connolly C, Fliess T (1997) A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans Image Process 6(7):1046–1048CrossRefGoogle Scholar
  4. de I’Eclairage CI (1978) Recommendations on uniform color spaces-color difference equations, psyhometric color terms. Supplement no. 2 to CIE publication no. 15 (E-1.3. 1) 1971. TC, 1–3Google Scholar
  5. Frintrop S, Rome E, Christensen HI (2010) Computational visual attention systems and their cognitive foundations: a survey. ACM Trans Appl Percept (TAP) 7(1):6:1–6:39Google Scholar
  6. Gapp K-P (1995) Object localization: selection of optimal reference objects. In: International conference on spatial information theory. Springer, Berlin, Heidelberg, pp 519–536Google Scholar
  7. Gevers T, Smeulders AWM (1999) Color-based object recognition. Elsevier. Pattern Recognit 32(3):453–464CrossRefGoogle Scholar
  8. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: Conference on vision and pattern recognition. IEEE, pp 1–8Google Scholar
  9. Hoffman DD, Singh M (1997) Salience of visual parts. Elsevier. Cognition 68(1):29–78CrossRefGoogle Scholar
  10. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: Computer vision and pattern recognition. IEEE conference on. IEEE Minneapolis, MN, pp 1–8Google Scholar
  11. Itti L (2006) Quantitative modelling of perceptual salience at human eye position. Taylor & Francis Group. Psychology Press. Visual Cognit 14(4–8):959–984CrossRefGoogle Scholar
  12. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scence analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259CrossRefGoogle Scholar
  13. Ju R, Ge L, Geng W, Ren T, Wu G (2014) Depth saliency based on anisotropic center-surround difference. In: Image processing (ICIP), 2014 IEEE international conference on. IEEE, pp 1115–1119Google Scholar
  14. Klippel A, Winter S (2005) Structural salience of landmarks for route directions. In: Cohn G, Mark M (eds) Spatial information theory. Springer, Ellicottville, pp 347–362CrossRefGoogle Scholar
  15. Lara G, De Antonio A, Peña A (2016) A computational measure of saliency of the shape of 3D objects. In: Mejia J, Muñoz M, Rocha Á, Calvo-Manzano J (eds) Trends and applications in software engineering. Springer, Cham, pp 235–245CrossRefGoogle Scholar
  16. Li J, Levine M, An X, He H (2011) Saliency detection based on frequency and spatial domain analysis. In: Hoey J, McKenna S, Trucco E (eds) Proceedings of the British machine vision conference. BMVC PressGoogle Scholar
  17. Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010CrossRefGoogle Scholar
  18. López F, Valiente JM, Baldrich R, Vanrell M (2005) Fast surface grading using color statistics in the CIE Lab space. In: Iberian conference on pattern recognition and image analysis (LNCS 3523), Springer, Berlin, Heidelberg, vol 2, pp 666–673Google Scholar
  19. Mangold R (1986) Sensorische Faktoren Beim Verstehen Überspezifizierter Objektbenennungen. Peter Lang, FrankfurtGoogle Scholar
  20. Oliva A, Torralba A, Castelhano MS, Henderson JM (2003) Top-dow control of visual attention in object detection. In: Image proceedings, 2003. icip 2003. Proceedings. 2003 international conference on, vol 1, pp 1–253Google Scholar
  21. Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks. In: Egenhofer MJ, Mark DM (eds) International conference on geographic information science, vol 2478. Springer, Berlin, Heidelberg, Boulder, CO, USA, pp 243–259Google Scholar
  22. Röser F, Hamburger K, Knauff M (2011) The Giessen virtual environment laboratory: human wayfinding and landmark salience Springer-Verlag. Cognit Process 12(2):209–214CrossRefGoogle Scholar
  23. Röser F, Hamburger K, Krumnack A, Knauff M (2012) The structural salience of landmarks: results from an on-line study and a virtual environment experiment. Taylor & Francis Group. J Spat Sci 57(1):37–50CrossRefGoogle Scholar
  24. Röser F, Krumnack A, Hamburger K (2013) The influence of perceptual and structural salience. In: CogSci, pp 3315–3320Google Scholar
  25. Rossel RV, Minasny B, Roudier P, McBratney AB (2006) Colour space models for soil science. Elsevier. Geoderma 133(3):320–337CrossRefGoogle Scholar
  26. Saleh A, Khalil M, Wahdan A-M (2003) An adaptive image watermarking scheme for color images using S-CIELAB. In: Circuits and systems, 2003 IEEE 46th Midwest symposium, vol 3. IEEE, pp 1575–1578Google Scholar
  27. Sampedro MJ, Blanco M, Ponte D, Leirós LI (2010) Saliencia Perceptiva y Atención. La Atención (VI). Un enfoque pluridisciplinar, pp 91–103Google Scholar
  28. Shilane P, Min P, Kazhdan M, Furkhouser T (2004) The Princeton shape benchmark. In: Shape modeling applications, 2004. Proceeding. IEEE Washington, DC, USA, pp 167–178Google Scholar
  29. Singh S (2006) Impact of color on marketing. Manag Decis 44(6):783–789CrossRefGoogle Scholar
  30. Song R, Liu Y, Martin RR, Rosin PL (2014) Mesh saliency via spectral processing. ACM Trans Graph (TOG) 33(1):6CrossRefzbMATHGoogle Scholar
  31. Stoia L (2007) Noun phrase generation for situated dialogs. Ohio State University. Ph.D. thesisGoogle Scholar
  32. Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convulational neural networks for 3D shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp 945–953Google Scholar
  33. Undurraga C, Mery D (2011) Improving tracking algorithms using saliency. In: César SM, Kim S-W (eds) Proceedings 16th Iberoamerican congress. Pattern recognition, vol 7042. Springer-Verlag, Berlin, Heidelberg, Chile, pp 141–148Google Scholar
  34. Undurraga C, Mery D, Sucar SLE (2010) Modelo de Saliencia utilizando el descriptor de covarianzaGoogle Scholar
  35. Wu J, Shen X, Zhu W, Liu L (2013) Mesh saliency with global rarity. ELSEVIER. Graph Models 75(5):255–264CrossRefGoogle Scholar
  36. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, vol 8. Wiley, New YorkGoogle Scholar
  37. Yuan JC-C, Brewer JD, Monaco EA, Davis EL (2007) Defining a natural tooth color space based on a 3-dimensional shade system. J Prosthet Dent 98(2):110–119CrossRefGoogle Scholar
  38. Zhao Y, Liu Y, Zeng Z (2013) Using region-based saliency for 3D interest points detection. In: International conference on computer analysis of images and patterns. Springer, Berlin, Heidelberg, pp 108–116Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Graciela Lara
    • 1
  • Angélica De Antonio
    • 2
  • Adriana Peña
    • 1
    Email author
  1. 1.CUCEI of the Universidad de GuadalajaraGuadalajara (Jalisco)Mexico
  2. 2.Escuela Técnica Superior de Ingenieros Informáticos of the Universidad Politécnica de MadridBoadilla Del MonteSpain

Personalised recommendations