Advertisement

Virtual Reality

, Volume 22, Issue 1, pp 13–23 | Cite as

Designing a camera placement assistance system for human motion capture based on a guided genetic algorithm

  • Azeddine Aissaoui
  • Abdelkrim Ouafi
  • Philippe Pudlo
  • Christophe Gillet
  • Zine-Eddine Baarir
  • Abdelmalik Taleb-Ahmed
Original Article

Abstract

In multi-camera motion capture systems, determining the optimal camera configuration (camera positions and orientations) is still an unresolved problem. At present, configurations are primarily guided by a human operator’s intuition, which requires expertise and experience, especially with complex, cluttered scenes. In this paper, we propose a solution to automate camera placement for motion capture applications in order to assist a human operator. Our solution is based on the use of a guided genetic algorithm to optimize camera network placement with an appropriate number of cameras. In order to improve the performance of the genetic algorithm (GA), two techniques are described. The first is a distribution and estimation technique, which reduces the search space and generates camera positions for the initial GA population. The second technique is an error metric, which is integrated at GA evaluation level as an optimization function to evaluate the quality of the camera placement in a camera network. Simulation experiments show that our approach is more efficient than other approaches in terms of computation time and quality of the final camera network.

Keywords

Multi-camera-based motion capture systems Optimal camera configurations Genetic algorithm Optimization 

Notes

Acknowledgements

This research was supported by the Franco-Algerian cooperation programme PHC TASSILI (12MDU876) Grants. Entitled “Assistant System to the Cameras Location in the MOCAP”, the Project gathers members of Automatic Control and Human–Machine Systems of LAMIH Laboratory-Valenciennes University-France, and AISEL Laboratory-Biskra University-Algerie.

References

  1. Aissaoui A, Baarir Z, Ouafi A, Pudlo P, Taleb-Ahmed A, Gillet C, Deraz F (2014) Optimisation technique of camera placement for motion capture simulations. Comput Methods Biomech Biomed Eng 17(sup1):122–123CrossRefGoogle Scholar
  2. Al Hasan M, Ramachandran KK, Mitchell JE (2008) Optimal placement of stereo sensors. Opt Lett 2(1):99–111MathSciNetCrossRefzbMATHGoogle Scholar
  3. Angeline PJ (1995) Adaptive and self-adaptive evolutionary computations. In: Palaniswami M, Attikiouzel Y (eds) Computational intelligence: a dynamic systems perspective. IEEE Press, New York, pp 152–163Google Scholar
  4. Bao S, Jiang R, Kwan W, Wang B, Ma X, Song Y-Q (2011) Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet 56(6):406–414CrossRefGoogle Scholar
  5. Chen X, Davis J (2008) An occlusion metric for selecting robust camera configurations. Mach Vis Appl 19(4):217–222CrossRefzbMATHGoogle Scholar
  6. Chvatal V (1975) A combinatorial theorem in plane geometry. J Comb Theory Ser B 18(1):39–41MathSciNetCrossRefzbMATHGoogle Scholar
  7. Ercan AO, Yang DB, El Gamal A, Guibas LJ (2006) Optimal placement and selection of camera network nodes for target localization. In: International conference on distributed computing in sensor systems. Springer, pp 389–404Google Scholar
  8. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99CrossRefGoogle Scholar
  9. Gonzalez-Barbosa J-J, García-Ramírez T, Salas J, Hurtado-Ramos J-B, Rico-Jiménez J-D-J (2009) Optimal camera placement for total coverage. In: Proceedings of the 2009 IEEE international conference on robotics and automation. IEEE Press, pp 3672–3676Google Scholar
  10. Hörster E, Lienhart R (2006) On the optimal placement of multiple visual sensors. In: Proceedings of the 4th ACM international workshop on video surveillance and sensor networks. ACM, pp 111–120Google Scholar
  11. Indu S, Chaudhury S, Mittal NR, Bhattacharyya A (2009) Optimal sensor placement for surveillance of large spaces. In: ICDSC 2009. 3rd ACM/IEEE international conference on distributed smart cameras. IEEE, pp 1–8Google Scholar
  12. Katz I, Aghajan H, Haymaker J (2010) A process for sensor configuration in multi-camera networks. In: Proc. 4th ACM/IEEE int. conf. distributed smart camerasGoogle Scholar
  13. Kita H (2001) A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evol Comput 9(2):223–241CrossRefGoogle Scholar
  14. Lee D, Lin A (1986) Computational complexity of art gallery problems. IEEE Trans Inf Theory 32(2):276–282MathSciNetCrossRefzbMATHGoogle Scholar
  15. Lee MW, Jung CH, Lee MG, Brutzman D (2015) Data definition of 3D character modeling and animation using H-Anim. J Converg 6(2):19–29CrossRefGoogle Scholar
  16. Malik R, Bajcsy P (2008) Automated placement of multiple stereo cameras. In: The 8th workshop on omnidirectional vision, camera networks and non-classical cameras-OMNIVISGoogle Scholar
  17. MathWorks (1994) Matlab r2015a. https://www.mathworks.com/products/matlab.html. Accessed 27 Dec 2016
  18. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, CambridgezbMATHGoogle Scholar
  19. Mittal A, Davis LS (2008) A general method for sensor planning in multi-sensor systems: extension to random occlusion. Int J Comput Vis 76(1):31–52CrossRefGoogle Scholar
  20. Morsly Y, Aouf N, Djouadi MS, Richardson M (2012) Particle swarm optimization inspired probability algorithm for optimal camera network placement. IEEE Sens J 12(5):1402–1412CrossRefGoogle Scholar
  21. Olague G, Mohr R (2002) Optimal camera placement for accurate reconstruction. Pattern Recogn 35(4):927–944CrossRefzbMATHGoogle Scholar
  22. O’rourke J (1987) Art gallery theorems and algorithms, vol 57. Oxford University Press, OxfordzbMATHGoogle Scholar
  23. Piciarelli C, Micheloni C, Foresti GL (2010) Occlusion-aware multiple camera reconfiguration. In: Proceedings of the 4th ACM/IEEE international conference on distributed smart cameras. ACM, pp 88–94Google Scholar
  24. Rahimian P, Kearney JK (2015) Optimal camera placement for motion capture systems in the presence of dynamic occlusion. In: Proceedings of the 21st ACM symposium on virtual reality software and technology. ACM, pp 129–138Google Scholar
  25. Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man Cybern Part B (Cybern) 24(4):656–667CrossRefGoogle Scholar
  26. Szeliski R (2010) Computer vision: algorithms and applications. Springer Science & Business Media, BerlinzbMATHGoogle Scholar
  27. Xu Z, Zhang J, Zhang Y (2003) Bionics in computational intelligence: theory and algorithm. Science Press, BeijingGoogle Scholar
  28. Yao Y, Chen C-H, Abidi B, Page D, Koschan A, Abidi M (2010) Can you see me now? sensor positioning for automated and persistent surveillance. IEEE Trans Syst Man Cybern Part B (Cybern) 40(1):101–115CrossRefGoogle Scholar
  29. Zhao J, Cheung S-C, Nguyen T (2008) Optimal camera network configurations for visual tagging. IEEE J Sel Top Sig Process 2(4):464–479CrossRefGoogle Scholar
  30. Zhao J, Cheung S, Nguyen T (2009) Optimal visual sensor network configuration. Multi-camera networks: principles and applications, Academic Press, New York, NY, USA, pp 139–162Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Azeddine Aissaoui
    • 1
  • Abdelkrim Ouafi
    • 1
  • Philippe Pudlo
    • 2
    • 3
    • 4
  • Christophe Gillet
    • 2
    • 3
    • 4
  • Zine-Eddine Baarir
    • 1
  • Abdelmalik Taleb-Ahmed
    • 2
    • 3
    • 4
  1. 1.LESIA LaboratoryBiskra UniversityBiskraAlgeria
  2. 2.UVHC, LAMIHValenciennesFrance
  3. 3.CNRS, UMR 8201ValenciennesFrance
  4. 4.University Lille Nord de FranceLilleFrance

Personalised recommendations