Advertisement

Virtual Reality

, Volume 21, Issue 3, pp 127–144 | Cite as

Reusing heterogeneous data for the conceptual design of shapes in virtual environments

  • Zongcheng Li
  • Franca Giannini
  • Jean-Philippe PernotEmail author
  • Philippe Véron
  • Bianca Falcidieno
Original Article

Abstract

Today, digital data such as 2D images, 3D meshes and 3D point clouds are widely used to design virtual environments (VE). Most of the time, only one type of those multimodal data is used to describe and specify the shapes of the objects. However, a single object can be seen as a combination of components linked with constraints specifying the relationships and the rigid transformations defining their arrangement. Thus, the definition of new methods able to combine any kind of multimodal data in an easy way would allow non-experts of VE to rapidly mock up objects and scenes. In this paper, we propose a new shape description model together with its associated constraints toolbox enabling the description of complex shapes from multimodal data. Not only rigid transformations are considered but also scale modifications according to the specified context of the constraint setting. The heterogeneous virtual objects (i.e., composed by scalable multimodal components) then result from the resolution of a constraint satisfaction problem through an optimization approach. The proposed approach is illustrated and validated with examples obtained using our prototype software.

Keywords

Virtual reality Conceptual design Shape and object description Heterogeneous data Constraint satisfaction problem 

Notes

Acknowledgements

The work has been partially supported by the VISIONAIR project funded by the European Commission under Grant Agreement 262044, the French National project Co-DIVE and by the Italian National Project “Tecnologie e sistemi innovativi per la fabbrica del futuro e Made in Italy.”

Supplementary material

10055_2016_302_MOESM1_ESM.mp4 (105.2 mb)
Supplementary material 1 (MP4 107715 kb)

References

  1. Allègre R, Galin E, Chaine R, Akkouche S (2006) The HybridTree: mixing skeletal implicit surfaces, triangle meshes, and point sets in a free-form modeling system. Graph Models 68(1):42–64CrossRefzbMATHGoogle Scholar
  2. Antonelli M, Beccari C, Casciola G, Ciarloni R, Morigi S (2013) Subdivision surfaces integrated in a CAD system. Comput Aided Des 45(11):1294–1305CrossRefGoogle Scholar
  3. Biasotti S, Giorgi D, Spagnuolo M, Falcidieno B (2008) Reeb graphs for shape analysis and applications. Theoret Comput Sci 392(1–3):5–22MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bloch I (1999) Fuzzy relative position between objects in image processing: a morphological approach. IEEE Trans Pattern Anal Mach Intell 21(7):657–664CrossRefGoogle Scholar
  5. Décriteau D, Pernot J-P, Daniel M (2016) Towards a declarative modelling approach built on top of a CAD modeller. Comput Aided Design Appl 13(6):737–746CrossRefGoogle Scholar
  6. Deluca L, Véron P, Florenzano M (2006) Reverse engineering of architectural buildings based on a hybrid modeling approach. Comput Graph 30(2):160–176CrossRefGoogle Scholar
  7. El-Hakim SF (2002) Semi-automatic 3D reconstruction of occluded and unmarked surfaces from widely separated views. Int Arch Photogr Remote Sens Spatial Inf Sci 34(5):143–145Google Scholar
  8. Falcidieno B, Spagnuolo M, Alliez P, Quak E, Vavalis E, Houstis C (2004) Towards the semantics of digital shapes: the AIM@SHAPE approach. EWIMTGoogle Scholar
  9. Hudelot C, Atif J, Bloch I (2008) Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst 159(15):1929–1951MathSciNetCrossRefGoogle Scholar
  10. Ingber L (1993) Simulated annealing: practice versus theory. Math Comput Model 18(11):29–57MathSciNetCrossRefzbMATHGoogle Scholar
  11. Jain A, Thormählen T, Ritschel T, Seidel H-P (2012) Exploring shape variations by 3D-model decomposition and part-based recombination. Comput Graphics Forum 31(2):631–640CrossRefGoogle Scholar
  12. Jiang N, Tan P, Cheong LF (2009) Symmetric architecture modeling with a single image. ACM Trans Graph 28(5):1–8CrossRefGoogle Scholar
  13. Lee J, Funkhouser T (2008) Sketch-based search and composition of 3D models. In: EUROGRAPHICS workshop on sketch-based interfaces and modeling, 2008Google Scholar
  14. Luciano da Fontoura C, Roberto Marcondes Cesar J (2000) Shape analysis and classification: theory and practice. CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  15. Mathematica9 (2016) Available: http://www.wolfram.com/mathematica/new-in-9/
  16. Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2:575–601MathSciNetCrossRefzbMATHGoogle Scholar
  17. Mitra N, Wand M, Zhang H, Cohen-Or D, Kim V, Huang Q-X (2013) Structure-aware shape processing. In: SIGGRAPH Asia 2013 courses. ACM, New YorkGoogle Scholar
  18. Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313MathSciNetCrossRefzbMATHGoogle Scholar
  19. Panchetti M, Pernot J-P, Véron P (2010) Towards recovery of complex shapes in meshes using digital images for reverse engineering applications. Comput Aided Des 42(8):693–707CrossRefGoogle Scholar
  20. Pernot J-P, Falcidieno B, Giannini F, Léon J-C (2008) Hybrid models deformation tool for free-form shapes manipulation. In: ASME 2008 international design engineering technical conferences & design and automation conference, New-YorkGoogle Scholar
  21. Price K, Storn R (1997) Differential evolution. Dr. Dobb’s J 264:18–24zbMATHGoogle Scholar
  22. Reeb G (1946) Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique. Comptes-rendus de l’Académie des Sciences, pp 848–849Google Scholar
  23. Repository TS (2011–2015) Shape repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/
  24. Sawyer K (2013) Zig Zag: the surprising path to greater creativity. Jossey-Bass, New YorkGoogle Scholar
  25. Smith G (1998) Idea-generation techniques: a formulary of active ingredients. J Creative Behav 32(2):107–133MathSciNetCrossRefGoogle Scholar
  26. Takemura CM (2008) Modelagem de posições relativas de formas complexas para análise de configuração espacial. Doutorado em Ciências da Computação, Universidade de São PauloGoogle Scholar
  27. Tutenel T, Bidarra R, Smelik RM, de Kraker KJ (2008) The role of semantics in games and simulations. ACM Comput Entertain 6(4):1–35CrossRefGoogle Scholar
  28. Unity3D (2016) Available: http://www.unity3.com
  29. Vanderbei R (2001) Linear programming: foundations and extensions. Springer, BerlinCrossRefzbMATHGoogle Scholar
  30. Wendrich R (2009–2016) Raw shaping form finding project. www.rawshaping.com
  31. Xie X, Xu K, Mitra NJ, Cohen-Or D, Gong W, Su Q, Chen B (2013) Sketch-to-design: context-based part assembly. Comput Graphics Forum 32(8):233–245CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Zongcheng Li
    • 1
    • 2
  • Franca Giannini
    • 2
  • Jean-Philippe Pernot
    • 1
    Email author
  • Philippe Véron
    • 1
  • Bianca Falcidieno
    • 2
  1. 1.LSIS UMR CNRS 7296Arts et Métiers ParisTechAix-En-ProvenceFrance
  2. 2.IMATI-CNRGenoaItaly

Personalised recommendations