Virtual Reality

, Volume 19, Issue 1, pp 57–70 | Cite as

DSCVR: designing a commodity hybrid virtual reality system

Original Article

Abstract

This paper presents the design considerations, specifications, and lessons learned while building DSCVR, a commodity hybrid reality environment. Consumer technology has enabled a reduced cost for both 3D tracking and screens, enabling a new means for the creation of immersive display environments. However, this technology also presents many challenges, which need to be designed for and around. We compare the DSCVR System to other existing VR environments to analyze the trade-offs being made.

Keywords

Hybrid reality Virtual reality Display wall Immersive systems Commodity hardware 3D High resolution Passive stereo 

Notes

Acknowledgments

We would like to acknowledge the support of the Living Environments Laboratory, the School of Human Ecology, the UW–Madison Graduate School and the Wisconsin Institute for Discovery. We would specifically like to thank Vito Freese for his assistance with installation and Patricia Brennan, Kendra Kreutz, Andrew Wagner, John Hilgers, and Roberto Rengel for their support and assistance in this project.

References

  1. Ainsworth RA, Sandin DJ, Schulze JP, Prudhomme A, DeFanti TA, Srinivasan M (2011) Acquisition of stereo panoramas for display in vr environmentsGoogle Scholar
  2. Amatriain X, Kuchera-Morin J, Hollerer T, Pope ST (2009) The allosphere: immersive multimedia for scientific discovery and artistic exploration. IEEE MultiMedia 16(2):0064–75CrossRefGoogle Scholar
  3. Arthur K (1996) Effects of field of view on task performance with head-mounted displays. In: Conference companion on human factors in computing systems. ACM, New York, pp 29–30Google Scholar
  4. Avery B, Thomas BH, Velikovsky J, Piekarski W (2005) Outdoor augmented reality gaming on five dollars a day. In: Proceedings of the 6th Australasian conference on User interface—volume 40, AUIC ’05, pp 79–88. Australian Computer Society Inc, Darlinghurst, AustraliaGoogle Scholar
  5. Bacim F, Ragan E, Scerbo S, Polys NF, Setareh M, Jones BD (2013) The effects of display fidelity, visual complexity, and task scope on spatial understanding of 3d graphs. In: Proceedings of graphics interface 2013, GI ’13, pp 25–32. Canadian Information Processing Society, Toronto, Ont., CanadaGoogle Scholar
  6. Basu A, Saupe C, Refour E, Raij A, Johnsen K (2012) Immersive 3dui on one dollar a day. In: 2012 IEEE symposium on 3D user interfaces (3DUI), pp 97–100Google Scholar
  7. Bayer, BE (1976) Color imaging array. US Patent 3,971,065Google Scholar
  8. Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7):36–43CrossRefGoogle Scholar
  9. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL (2012) Validity of the microsoft kinect for assessment of postural control. Gait Posture 36(3):372–377CrossRefGoogle Scholar
  10. CruzNeira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The cave: audio visual experience automatic virtual environment. Commun ACM 35(6):64–72CrossRefGoogle Scholar
  11. Cruz-Neira C, Sandin DJ, DeFanti TA (1993) Surround-screen projection-based virtual reality: the design and implementation of the cave. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques. ACM, New York, pp 135–142Google Scholar
  12. DeFanti TA, Acevedo D, Ainsworth RA, Brown MD, Cutchin S, Dawe G, Doerr KU, Johnson A, Knox C, Kooima R et al (2011a) The future of the cave. Cent Eur J Eng 1(1):16–37CrossRefGoogle Scholar
  13. DeFanti T, Acevedo D, Ainsworth R, Brown M, Cutchin S, Dawe G, Doerr KU, Johnson A, Knox C, Kooima R, Kuester F, Leigh J, Long L, Otto P, Petrovic V, Ponto K, Prudhomme A, Rao R, Renambot L, Sandin D, Schulze J, Smarr L, Srinivasan M, Weber P, Wickham G (2011b) The future of the cave. Cent Eur J Eng 1(1):16–37CrossRefGoogle Scholar
  14. Doerr K, Kuester F (2011) Cglx: a scalable, high-performance visualization framework for networked display environments. IEEE Trans Vis Comput Graph 17(3):320–332CrossRefGoogle Scholar
  15. Eilemann S, Makhinya M, Pajarola R (2009) Equalizer: a scalable parallel rendering framework. IEEE Trans Vis Comput Graph 15(3):436–452CrossRefGoogle Scholar
  16. Febretti A, Nishimoto A, Thigpen T, Talandis J, Long L, Pirtle JD, Peterka T, Verlo A, Brown M, Plepys D, Sandin D, Renambot L, Johnson A, Leigh J (2013) CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: M Dolinsky, IE McDowall (eds) IS&T/SPIE Electronic Imaging, pp 864903–864903–12. SPIEGoogle Scholar
  17. Heddle B. The New Generation Kinect for Windows Sensor is Coming Next Year - Kinect for Windows Product Blog—Site Home—MSDN Blogs. http://blogs.msdn.com/b/kinectforwindows/archive/2013/05/23/the-new-generation-kinect-for-windows-sensor-is-coming-next-year.aspx
  18. Higgins T (2010) Unity-3d game engineGoogle Scholar
  19. Hong H, Jang J, Lee D, Lim M, Shin H (2010) Analysis of angular dependence of 3-d technology using polarized eyeglasses. J Soc Inf Disp 18(1):8–12CrossRefGoogle Scholar
  20. Humphrey W, Dalke A, Schulten K (1996) Vmd: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  21. Johnson GP, Abram GD, Westing B, Navr’til P, Gaither K (2012) Displaycluster: an interactive visualization environment for tiled displays. In: 2012 IEEE international conference on cluster computing (CLUSTER), pp 239–247. IEEEGoogle Scholar
  22. Kim T, Ra JM, Lee JH, Moon SH, Choi KY (2011) 3d Crosstalk compensation to enhance 3d image quality of plasma display panel. IEEE Trans Consum Electr 57(4):1471–1477. doi:10.1109/TCE.2011.6131113 CrossRefGoogle Scholar
  23. Knox C, Brown M, Doerr K, Jenks S, Zender C, Kuester F (2005) Simultaneous visualization of the ipcc ar4 model ensemble on an extremely high resolution display wall (hiperwall). In: AGU fall meeting abstracts, 1:1140Google Scholar
  24. Laha B, Sensharma K, Schiffbauer J, Bowman D (2012) Effects of immersion on visual analysis of volume data. IEEE Trans Vis Comput Gr 18(4):597–606. doi:10.1109/TVCG.2012.42 CrossRefGoogle Scholar
  25. Lange B, Koenig S, Chang CY, McConnell E, Suma E, Bolas M, Rizzo A (2012) Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil Rehabil 34(22):1863–1870CrossRefGoogle Scholar
  26. Leigh J, Johnson A, Renambot L, Peterka T, Jeong B, Sandin DJ, Talandis J, Jagodic R, Nam S, Hur H et al (2013) Scalable resolution display walls. Proc IEEE 101(1):115–129CrossRefGoogle Scholar
  27. Livingston M, Sebastian J, Ai Z, Decker J (2012) Performance measurements for the microsoft kinect skeleton. In: Virtual reality short papers and posters (VRW), 2012 IEEE, pp 119–120Google Scholar
  28. Luo J, Qin K, Zhou Y, Mao M, Li R (2010) Gpu rendering for tiled multi-projector autostereoscopic display based on chromium. Vis Comput 26(6–8):457–465CrossRefGoogle Scholar
  29. Margolis T, DeFanti TA,  Dawe G, Prudhomme A, Schulze JP, Cutchin S (2011) Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback. IS&T/SPIE Electronic Imaging, p 786417Google Scholar
  30. McMahan RP, Bowman DA, Zielinski DJ, Brady RB (2012) Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans Vis Comput Graph 18(4):626–633CrossRefGoogle Scholar
  31. Meyer-Spradow J, Ropinski T, Mensmann J, Hinrichs K (2009) Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput Graph Appl 29(6):6–13CrossRefGoogle Scholar
  32. MYO—Gesture control armband by Thalmic Labs. https://www.thalmic.com/en/myo/
  33. Pausch R (1991) Virtual reality on five dollars a day. Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’91. ACM, New York, NY, USA, pp 265–270Google Scholar
  34. Polys NF, Kim S, Bowman DA (2007) Effects of information layout, screen size, and field of view on user performance in information-rich virtual environments. Comput Animat Virtual Worlds 18(1):19–38. doi:10.1002/cav.159.
  35. Ponto K, Wypych T, Doerr K, Yamaoka S, Kimball J, Kuester F (2009) Videoblaster: a distributed, low-network bandwidth method for multimedia playback on tiled display systems. In: 11th IEEE international symposium on multimedia, 2009. ISM’09, pp 201–206. IEEEGoogle Scholar
  36. Ponto K, Doerr K, Kuester F (2010) Giga-stack: a method for visualizing giga-pixel layered imagery on massively tiled displays. Future Gener Comput Syst 26(5):693–700CrossRefGoogle Scholar
  37. Prabhat, Forsberg A, Katzourin M, Wharton K, Slater M (2008) A comparative study of desktop, fishtank, and cave systems for the exploration of volume rendered confocal data sets. IEEE Trans Vis Comput Gr 14(3):551–563. doi:10.1109/TVCG.2007.70433 CrossRefGoogle Scholar
  38. Ragan E, Kopper R, Schuchardt P, Bowman D (2013) Studying the effects of stereo, head tracking, and field of regard on a small-scale spatial judgment task. IEEE Trans Vis Comput Gr 19(5):886–896. doi:10.1109/TVCG.2012.163 CrossRefGoogle Scholar
  39. Rash C, McLean W, Mozo B, Licina J, McEntire B (1999) Human factors and performance concerns for the design of helmet-mounted displays. In: RTO HFM symposium on current aeromedical issues in rotary wing operationGoogle Scholar
  40. Renambot L, Jeong B, Hur H, Johnson A, Leigh J (2009) Enabling high resolution collaborative visualization in display rich virtual organizations. Future Gener Comput Syst 25(2):161–168CrossRefGoogle Scholar
  41. Rosson MB, Carroll JM (2001) Usability engineering: scenario-based development of human-computer interaction. Elsevier, AmsterdamGoogle Scholar
  42. Sampaio PN, de Freitas RIC, Cardoso GNP (2008) Ogre-multimedia: an api for the design of multimedia and virtual reality applications. In: Knowledge-based intelligent information and engineering systems. Springer, New York, pp 465–472Google Scholar
  43. Schou T, Gardner HJ (2007) A Wii remote, a game engine, five sensor bars and a virtual reality theatre. In: OZCHI ’07. ACM Press, New York, pp 231–234Google Scholar
  44. Shupp L, Andrews C, Dickey-Kurdziolek M, Yost B, North C (2009) Shaping the display of the future: the effects of display size and curvature on user performance and insights. Hum Comput Interact 24(1–2):230–272CrossRefGoogle Scholar
  45. Simon A, Gobel M (2002) The i-cone trade;—a panoramic display system for virtual environments. In: Proceedings of the 10th Pacific conference on computer graphics and applications, 2002, pp 3–7. doi:10.1109/PCCGA.2002.1167834
  46. STEM System: The Best Way to Interact with Virtual Worlds by Sixense—Kickstarter. http://www.kickstarter.com/projects/89577853/stem-system-the-best-way-to-interact-with-virtual
  47. Taylor II RM, Hudson TC, Seeger A, Weber H, Juliano J, Helser AT (2001) Vrpn: a device-independent, network-transparent vr peripheral system. In: Proceedings of the ACM symposium on Virtual reality software and technology. ACM, New Year, pp 55–61Google Scholar
  48. Teather RJ, Pavlovych A, Stuerzlinger W, MacKenzie IS (2009) Effects of tracking technology, latency, and spatial jitter on object movement. In: IEEE symposium on 3D user interfaces, 2009. 3DUI 2009, pp 43–50. IEEEGoogle Scholar
  49. Tracked THE Device Driver Software for Immersive Displays. http://www.mechdyne.com/trackd.aspx
  50. Wells MJ, Venturino M (1990) Performance and head movements using a helmet-mounted display with different sized fields-of-view. Opt Eng 29(8):870–877CrossRefGoogle Scholar
  51. Williams SC (2013) Immersive visualization. Proc Natl Acad Sci 110(12):4438–4438CrossRefGoogle Scholar
  52. Woods A (2010) Understanding crosstalk in stereoscopic displays. In: Keynote presentation at the three-dimensional systems and applications conference. Tokyo, Japan, pp 19–21Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Wisconsin Institute for DiscoveryMadisonUSA
  2. 2.Wisconsin Institute for DiscoveryMadisonUSA
  3. 3.Wisconsin Institute for DiscoveryMadisonUSA

Personalised recommendations