Virtual Reality

, Volume 15, Issue 4, pp 279–294 | Cite as

Virtual reality for cultural landscape visualization

  • Sébastien Griffon
  • Amélie Nespoulous
  • Jean-Paul Cheylan
  • Pascal Marty
  • Daniel Auclair
SI: Cultural Technology


Although land managers and policy-makers generally have a good experience of what result can be expected from their decisions, they are often faced with difficulty when trying to communicate the visual impact of a management option to stakeholders, particularly when the landscape exhibits a high cultural value. Three-dimensional visualization of the landscape is often used for communicating with the stakeholders. A challenge in participatory methods for integrated assessment and policy planning is to view future changes in land use, according to scenarios. A 3-D landscape visualization component, SLE (“Seamless Landscape Explorer”), has been developed, which is launched after a scenario simulation to allow for exploration of landscape changes. Pressures causing such changes are translated into changes in the spatial configuration of the landscape. The different types of land-use are visualized thanks to a library of detailed textures, and vegetation can be added. This has been applied to a study of four scenarios in the French Mediterranean region, which were set up as part of a participatory process for discussing the planning of the regional peri-urban and agricultural policy, in an area dominated by the typical culturally sensitive Mediterranean matorral, (“garrigue” shrubland) surrounding the Pic Saint-Loup mountain. Examples of visualization are shown and discussed here.


Landscape Visualization Computer imagery 3D modeling Virtual reality 



The SLE software was developed within the SEAMLESS integrated project, EU 6th Framework Programme for Research Technological Development and Demonstration, Priority Global Change and Ecosystems (European Commission, DG Research, contract no. 010036-2). The scenario building was done within the research action “Paysage et biodiversité: évaluation participative de la durabilité des stratégies de gestion” funded by the «Landscape and sustainable development» (PDD- Paysage et développement durable) programme from the French ministry of Ecology and Sustainable Development. The co-construction and the evaluation of the scenarios and results were done in close connection with the “Écologistes de l’Euzière” association (, and the paintings were made by John Walsh.


  1. Aitchinson J (1995) Cultural landscapes in Europe: a geographical perspective. In: von Droste B, Plachter H, Rössler M (eds) Cultural landscapes of universal value. Gustav Fischer Verlag, Jena, Germany, pp 272–288Google Scholar
  2. Alkan Olsson J, Bockstaller C, Stapleton LM, Ewert F, Knapen R, Therond O, Geniaux G, Bellon S, Pinto Correira T, Turpin N, Bezlepkina I (2009) A goal oriented indicator framework to support impact assessment of new policies for agri- environmental systems. Environ Sci Policy 12(5):562–572CrossRefGoogle Scholar
  3. Appleton K, Lovett A (2003) GIS-based visualisation of rural landscapes: defining ‘sufficient’ realism for environmental decision-making. Landsc Urban Plan 65:117–131CrossRefGoogle Scholar
  4. Appleton K, Lovett A (2005) GIS-based visualisation of development proposals: reactions from planning and related professionals. Comput Environ Urban Syst 29:321–339CrossRefGoogle Scholar
  5. Appleton K, Lovett A, Sünnenberg G, Dockerty T (2002) Rural landscape visualisation from GIS databases: a comparison of approaches, options and problems. Comput Environ Urban Syst 26:141–162CrossRefGoogle Scholar
  6. Auclair D, Barczi JF, Borne F, Etienne M (2001a) Landscape visualisation software as a forest management decision support system. In: Franc A, Laroussinie O, Karjalainen T (eds) Criteria and indicators for sustainable forest management at the forest management unit level. EFI, Torikatu, Finland, pp 207–214Google Scholar
  7. Auclair D, Barczi JF, Borne F, Étienne M (2001b) Assessing the visual impact of agroforestry management with landscape design software. Landsc Res 26:397–406CrossRefGoogle Scholar
  8. Bell S (2001) Landscape pattern, perception and visualisation in the visual management of forests. Landsc Urban Plan 54:204–211CrossRefGoogle Scholar
  9. Bergen SD, Fridley JL, Ganter MA, Schiess P (1995) Predicting the visual effect of forest operations. J For 93:33–37Google Scholar
  10. Bishop ID, Wherrett JR, Miller DR (2001) Assessment of path choices on a country walk using a virtual environment. Landsc Urban Plan 52:225–237CrossRefGoogle Scholar
  11. Bishop ID, Hull RB, Stock C (2005) Supporting personal world-views in an envisioning system. Environ Model Softw 20:1459–1468CrossRefGoogle Scholar
  12. Bishop ID, Stock C, Williams KJ (2008) Using virtual environments and agent models in multi-criteria decision-making. Land Use Policy 26:87–94CrossRefGoogle Scholar
  13. Bloom C (2000) Terrain texture composition by blending in the frame buffer (“Splatting Textures”). Accessed 20 April 2009
  14. Büscher M, Gill S, Mogensen P, Shapiro D (2001) Landscapes of practice: bricolage as a method for situated design. Comput Supported Coop Work 10:1–28CrossRefGoogle Scholar
  15. Caplat P, Lepart J, Marty P (2006) Landscape patterns and agriculture: modelling the long-term effects of human practices on Pinus sylvestris spatial dynamics (Causse Mejean, France). Landscape Ecol 21:657–670CrossRefGoogle Scholar
  16. Caron P, Cheylan JP (2005) Donner sens à l’information géographique pour accompagner les projets de territoire: cartes et représentations spatiales comme supports d’itinéraires croisés. Géocarrefour 80/2: 111–122. accessible on-line at:
  17. Cartwright W (2008) Visualising alternative futures. In: Pettit C, Cartwright W, Bishop I, Lowell K, Pullar D, Duncan D (eds) Landscape analysis and visualisation: spatial models for natural resource management and planning. Springer, Berlin, pp 490–507Google Scholar
  18. Cheylan JP, Gumuchian H (2002) L’évaluation des impacts des politiques publiques paysagères au sein des Parcs Naturels Régionaux en montagnes méditerranéennes : quelles méthodes? Quels outils? In: Méthodes et outils pour l’évaluation des impacts des PPP, Politiques publiques paysagères et Parcs Naturels Régionaux, pour une évaluation, special issue, pp 13–24Google Scholar
  19. Cournède PH, Guyard T, Bayol B, Griffon S, de Coligny F, Borianne P, Jaeger M, de Reffye P (2009) A forest growth simulator based on functional-structural modelling of individual trees. In: PMA09, 3rd international symposium on plant growth modeling, simulation, visualization and applications. Beijing (China), 09-13/11/2009Google Scholar
  20. Danahy JW (1989) Irises in a landscape: an experiment in dynamic interaction and teaching design studio. In: McCullough M, Mitchell WJ, Purcell P (eds) Proceedings of the CAAD Futures’89, The electronic design studio: Architectural knowledge and media in the computer era. MIT Press, Cambridge, MA, pp 363–376Google Scholar
  21. Daniel TC (1992) Data visualization for decision support in environmental management. Landsc Urban Plan 21:261–263CrossRefGoogle Scholar
  22. Daniel TC (2001) Wither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc Urban Plan 54:267–281CrossRefGoogle Scholar
  23. Day AM, Willmott J (2005) Compound textures for dynamic impostor rendering. Comput Graph 29:109–124CrossRefGoogle Scholar
  24. De Boer WH (2000). Fast terrain rendering using geometrical mipmapping. Accessed 20 April 2009
  25. Debussche M, Lepart J, Dervieux A (1999) Mediterranean landscape changes : evidence from old postcards. Glob Ecol Biogeogr 8:3–15CrossRefGoogle Scholar
  26. Deng Q, Zhang XP, Gang Y, Jaeger M (2009) Multiresolution foliage for forest rendering. Comput Animat Virtual Worlds 20:1–23CrossRefGoogle Scholar
  27. Dockerty T, Lovett A, Sünnenberg G, Appleton K, Parry M (2005) Visualising the potential impacts of climate change on rural landscapes. Comput Environ Urban Syst 29:297–320CrossRefGoogle Scholar
  28. Ervin SM, Hasbrouck HH (2001) Landscape modelling: digital techniques for landscape visualization. McGraw-Hill, New YorkGoogle Scholar
  29. Frouws J (1998) The contested redefinition of the countryside. An analysis of rural discourses in the Netherlands. Sociol Ruralis 38:54–68CrossRefGoogle Scholar
  30. Gardner RH, Urban DL (2006) Neutral models for testing landscape hypotheses. Landscape Ecol 22:15–29CrossRefGoogle Scholar
  31. Gaucherel C, Fleury D, Auclair D, Dreyfus P (2006) Neutral models for patchy landscapes. Ecol Model 197(1–2):159–170CrossRefGoogle Scholar
  32. Ghadirian P, Bishop ID (2008) Integration of augmented reality and GIS: a new approach to realistic landscape visualisation. Landsc Urban Plan 86:226–232CrossRefGoogle Scholar
  33. Gobster PH, Nassauer JI, Daniel TC, Fry G (2007) The shared landscape: what does aesthetics have to do with ecology? Landscape Ecol 22:959–972CrossRefGoogle Scholar
  34. Griffon S, Auclair D, Nespoulous A (2010) Visualising changes in agricultural landscapes. In: Brouwer FM, van Ittersum MK (eds) Environmental and agricultural modelling: integrated approaches for policy impact assessment. Springer, Dordrecht, The Netherlands, pp 133–157Google Scholar
  35. Hazeu G, Elbersen B, Andersen E, Baruth B, van Diepen CA, Metzger MJ (2010) A biophysical typology in agri-environmental modelling. In: Brouwer FM, van Ittersum MK (eds) Environmental and agricultural modelling: integrated approaches for policy impact assessment. Springer, Dordrecht, The Netherlands, pp 159–187Google Scholar
  36. Herwig A, Paar P (2002) Game engines: tools for landscape visualization and planning? In: Buhmann E, Nothelfer U, Pietsch M (eds) Proceedings at Anhalt University of Applied Sciences. Trends in GIS and virtualization in environmental planning and design. Wichmann, Heidelberg, pp 162–171Google Scholar
  37. Iacucci G, Wagner I (2003) Supporting collaboration ubiquitously: an augmented learning environment for architecture students. In: Kuutti K, Karsten EH, Fitzpatrick G, Dourish P, Schmidt K (eds) Proceedings of the eighth European conference on computer-supported cooperative work, 14-18/09/2003. Helsinki, FN. Kluwer, NL. pp 139–158Google Scholar
  38. Lange E (2001) The limits of realism: perceptions of virtual landscapes. Landsc Urban Plan 54:163–182CrossRefGoogle Scholar
  39. Lange E, Bishop I (2001) Our visual landscape: analysis, modeling, visualization and protection. Landsc Urban Plan 54:1–3CrossRefGoogle Scholar
  40. Lange E, Hehl-Lange S, Brewer MJ (2008) Scenario-visualization for the assessment of perceived green space qualities at the urban-rural fringe. J Environ Manage 89:245–256CrossRefGoogle Scholar
  41. Le Ber F, Benoît M, Schott C, Mari JF, Mignolet C (2006) Studying crop sequences with CarrotAge, a HMM-based data mining software. Ecol Model 191:170–185CrossRefGoogle Scholar
  42. Le Ber F, Lavigne C, Adamczyk K, Mari JF, Angevin F, Colbach N (2010) Modelling neutral agricultural landscapes with tessellation methods : the GenExP-LandSiTes software—Application to simulation of gene flow. In: LandMod 2010. International conference on integrative landscape modelling. Montpellier, FR, 03-05/02/2010.
  43. Lepart J, Debussche M (1992) Human impact on landscape patterning: Mediterranean examples. In: Di Castri F, Hansen AJ (eds) Landscape boundaries: consequences for biotic diversity and ecological flows. Springer, Ecological Studies 92: 76–106Google Scholar
  44. Lovett A (2005) Futurescapes. Comput Environ Urban Syst 29:249–253CrossRefGoogle Scholar
  45. Lovett A, Kennaway R, Sünnenberg G, Cobb D, Dolman P, O’Riordan T (2001) Visualising sustainable agricultural landscapes. In: Unwin D, Fisher P (eds) Virtual reality in geography. Taylor & Francis, London, pp 102–130CrossRefGoogle Scholar
  46. MacFarlane R, Stagg H, Turner K, Lievesley M (2005) Peering through the smoke? Tensions in landscape visualisation. Comput Environ Urban Syst 29:341–359CrossRefGoogle Scholar
  47. Mander Ü, Uuemaa E (2010) Landscape assessment for sustainable planning. Ecol Indic 10:1–3CrossRefGoogle Scholar
  48. Mansergh I, Lau A, Anderson R (2008) Geographic landscape visualisation in planning adaptation to climate change in Victoria, Australia. In: Pettit C, Cartwright W, Bishop I, Lowell K, Pullar D, Duncan D (eds) Landscape analysis and visualisation: spatial models for natural resource management and planning. Springer, Berlin, pp 469–487Google Scholar
  49. Marty P (2010) Social participation and policies for strategic environmental assessment. In: Social movements and public action. Lessons from environmental issues (Marty P, Devaux S coord.). CEFRES, Prague, pp 131–148Google Scholar
  50. Muhar A (2001) Three-dimensional modelling and visualisation of vegetation for landscape simulation. Landsc Urban Plan 54:5–17CrossRefGoogle Scholar
  51. Nespoulous A (2004) Relations entre la dynamique de la végétation et la gestion sociale de l’espace: les garrigues du Pic Saint-Loup. MA Thesis, University Montpellier III, 89pGoogle Scholar
  52. Nijnik M, Mather A (2008) Analyzing public preferences concerning woodland development in rural landscapes in Scotland. Landsc Urban Plan 86:267–275CrossRefGoogle Scholar
  53. Ode A, Fry G, Tveit MS, Messager P, Miller D (2009) Indicators of perceived naturalness as drivers of landscape preference. J Environ Manage 90:375–383CrossRefGoogle Scholar
  54. Ode A, Tveit MS, Fry G (2010) Advantages of using different data sources in assessment of landscape change and its effect on visual scale. Ecol Indic 10:24–31CrossRefGoogle Scholar
  55. Orland B, Budthimedhee K, Uusitalo J (2001) Considering virtual worlds as representations of landscape realities and as tools for landscape planning. Landsc Urban Plan 54:139–148CrossRefGoogle Scholar
  56. Paar P (2006) Landscape visualizations: applications and requirements of 3D visualization software for environmental planning. Comput Environ Urban Syst 30:815–839CrossRefGoogle Scholar
  57. Paar P, Clasen M (2007) Earth, landscape, biotope, plant. Interactive visualisation with Biosphere3D. In: Schrenk M, Popovich VV, Benedikt J (eds) Real Corp 007—To plan is not enough: strategies, plans, concepts, projects and their successful implementation in urban, regional and real estate development. CORP, ViennaGoogle Scholar
  58. Perrin L, Beauvais N, Puppo M (2001) Procedural landscape modeling with geographic information: the IMAGIS approach. Landsc Urban Plan 54:33–47CrossRefGoogle Scholar
  59. Pettit C, Cartwright W, Bishop I, Lowell K, Pullar D, Duncan D (eds) (2008) Landscape analysis and visualisation: spatial models for natural resource management and planning. Book series: Lecture notes in geoinformation and cartography. Springer, BerlinGoogle Scholar
  60. Rivas V, Rix K, Frances E, Cendrero A, Brunsden D (1997) Geomorphological indicators for environmental impact assessment; consumable and non consumable geomorphological resources. Geomorphology 18:169–182CrossRefGoogle Scholar
  61. Salter JD, Campbell C, Journeay M, Sheppard SRJ (2009) The digital workshop: exploring the use of interactive and immersive visualisation tools in participatory planning. J Environ Manage 90:2090–2101CrossRefGoogle Scholar
  62. Sauget N, Depuy M (1996) Forêt paysanne et paysage: les agriculteurs et le visible. In: Balent G (ed) La forêt paysanne dans l’espace rural. Biodiversité, paysages, produits. Étud Rech Syst Agraires Dév 29: 245–264Google Scholar
  63. Savill P, Evans J, Auclair D, Falck J (1997) Plantation silviculture in Europe. Oxford University Press, Oxford, UKGoogle Scholar
  64. Sheppard SRJ (1982) Landscape portrayals: their use, accuracy, and validity in simulating proposed landscape change. Dissertation, University of California, BerkeleyGoogle Scholar
  65. Sheppard SRJ (2005) Landscape visualisation and climate change: the potential for influencing perceptions and behaviour. Environ Sci Policy 8:637–654CrossRefGoogle Scholar
  66. Sheppard SRJ (2006) Bridging the sustainability gap with landscape visualisation in community visioning hubs. IAJ the Integr Assess J 6:79–108Google Scholar
  67. Sheppard SRJ, Cizek P (2009) The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisation. J Environ Manage 90:2102–2117CrossRefGoogle Scholar
  68. Sirami C, Brotons L, Martin JL (2007) Vegetation and songbird response to land abandonment: from landscape to census plot. Divers Distrib 13:42–52Google Scholar
  69. Sirami C, Brotons L, Martin JL (2008) Spatial extent of bird species response to landscape changes: colonisation/extinction dynamics at the community-level in two contrasting habitats. Ecography 31:509–518CrossRefGoogle Scholar
  70. Snyder K (2003) Tools for community design and decision making. In: Geertman S, Stilwell J (eds) Planning support systems in practice. Springer, Berlin, pp 99–120Google Scholar
  71. Soliva R, Hunziker M (2009) Beyond the visual dimension: using ideal type narratives to analyse people’s assessments of landscape scenarios. Land Use Policy 26:284–294CrossRefGoogle Scholar
  72. Thomas AL, Price C (1999) Landscape valuation of farm woodlands. In: Burgess PJ, Brierley EDR, Morris J, Evans J (eds) Farm woodlands for the future. BIOS Scientific Publishers, Oxford, UK, pp 69–79Google Scholar
  73. Tyrväinen L, Tahvanainen L (2000) Landscape visualisation in rural land-use planning. In: XXI IUFRO world congress. Forests and society: the role of research, Kuala Lumpur, Malaysia, vol 1, pp 338–347Google Scholar
  74. Van Ittersum MK, Ewert F, Heckelei T, Wery J, Alkan Olsson J, Andersen E, Bezlepkina I, Brouwer F, Donatelli M, Flichman G, Olsson L, Rizzoli AE, Van der Wal T, Wien JE, Wolf J (2008) Integrated assessment of agricultural systems—A component-based framework for the European Union (SEAMLESS). Agric Syst 96:150–165CrossRefGoogle Scholar
  75. Wissen U, Schroth O, Lange E, Schmid WA (2008) Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations. J Environ Manage 89:184–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Sébastien Griffon
    • 1
    • 2
  • Amélie Nespoulous
    • 3
  • Jean-Paul Cheylan
    • 4
    • 5
  • Pascal Marty
    • 6
    • 7
  • Daniel Auclair
    • 8
  1. 1.INRA, UMR AMAPMontpellierFrance
  2. 2.CIRAD, UMR AMAPMontpellierFrance
  3. 3.CNRS, UMR ESPACEMontpellierFrance
  4. 4.CNRS, UMR ESPACEAvignonFrance
  5. 5.CIRAD-ESMontpellierFrance
  6. 6.CNRS, UMR CEFEMontpellierFrance
  7. 7.CEFRES, USRPragueCzech Republic
  8. 8.INRA, UMR AMAP (botAnique et bioinforMatique de l’Architecture des Plantes)Montpellier cedex 5France

Personalised recommendations