Virtual Reality

, 13:273 | Cite as

Multisensory VR interaction for protein-docking in the CoRSAIRe project

  • N. Férey
  • J. Nelson
  • C. Martin
  • L. Picinali
  • G. Bouyer
  • A. Tek
  • P. Bourdot
  • J. M. Burkhardt
  • B. F. G. Katz
  • M. Ammi
  • C. Etchebest
  • L. Autin
Original Article


Proteins take on their function in the cell by interacting with other proteins or biomolecular complexes. To study this process, computational methods, collectively named protein docking, are used to predict the position and orientation of a protein ligand when it is bound to a protein receptor or enzyme, taking into account chemical or physical criteria. This process is intensively studied to discover new biological functions for proteins and to better understand how these macromolecules take on these functions at the molecular scale. Pharmaceutical research also employs docking techniques for a variety of purposes, most notably in the virtual screening of large databases of available chemicals to select likely molecular candidates for drug design. The basic hypothesis of our work is that Virtual Reality (VR) and multimodal interaction can increase efficiency in reaching and analysing docking solutions, in addition to fully a computational docking approach. To this end, we conducted an ergonomic analysis of the protein–protein current docking task as it is carried out today. Using these results, we designed an immersive and multimodal application where VR devices, such as the three-dimensional mouse and haptic devices, are used to interactively manipulate two proteins to explore possible docking solutions. During this exploration, visual, audio, and haptic feedbacks are combined to render and evaluate chemical or physical properties of the current docking configuration.


Protein docking User-centered design Virtual reality Multimodal rendering 



This work is currently supported by the ANR (the French National Agency for Research) through the CoRSAIRe project of ARA MDMSA program, and by the RTRA (french Thematic Network of Advanced Research) DIGITEO labs, through the SIMCoD project.


  1. Anastassova M, Mégard C, Burkhardt JM (2007) Prototype evaluation and user-needs analysis in the early design of emerging technologies. In: Procedings of the 12th international conference on human-computer interaction (HCI’07)Google Scholar
  2. Anderson A, Weng Z (1999) VRDD: applying virtual reality visualization to protein docking and design. J Mol Graphi Model 17(3):180–186CrossRefGoogle Scholar
  3. André E (2000) The generation of multimedia presentations. In: Handbook of natural language processing, pp 305–327Google Scholar
  4. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–59CrossRefGoogle Scholar
  5. Annett J (2003) Hierarchical task analysis. In: Handbook of cognitive task design, pp. 17–35Google Scholar
  6. Arboun A (2007) Evaluation des métaphores de sonification. Master thesis, Ecole Nationale Supérieure Louis Lumière, Paris, FranceGoogle Scholar
  7. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98: 10037–10041Google Scholar
  8. Barass S, Zehner B (2000) Responsive sonification of well-logs. In: Proceedings of the international conference on auditory display (ICAD’00)Google Scholar
  9. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) The protein data bank. Nucleic Acids Res 1(28):235–242CrossRefGoogle Scholar
  10. Borrelli KW, Vitalis A, Raul Alcantara R, Guallar V (2005) PELE: protein energy landscape exploration. A novel Monte Carlo based technique. J Chem Theory Comput 6(1):1304–1311CrossRefGoogle Scholar
  11. Bourdot P, Touraine D (2002) Polyvalent display framework to control virtual navigations by 6DoF tracking. In: Proceedings of the IEEE virtual reality international conference (IEEE-VR’02)Google Scholar
  12. Bouyer G (2007) Rendu multimodal en Réalité Virtuelle: Supervision des interactions au service de la tâche. Ph.d. thesis, Université Paris XI, FranceGoogle Scholar
  13. Bouyer G, Bourdot P (2008) Supervision of 3D multimodal rendering for protein-protein virtual docking. In: Proceedings of the 13th Eurographics symposium on virtual environments (EGVE’08), pp 49–56Google Scholar
  14. Brooks FP Jr, Ouh-Young M , Batter JJ, Jerome Kilpatrick P (1990) Project GROPE: Haptic displays for scientific visualization. In: Proceedings of the 17th conference on computer graphics and interactive techniques, pp 177–185Google Scholar
  15. Comeau SR, Gatchell WD, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1):45–50CrossRefGoogle Scholar
  16. Connolly ML (1983a) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558CrossRefGoogle Scholar
  17. Connolly ML (1983b) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713CrossRefGoogle Scholar
  18. Corey RB, Pauling L (1953) Molecular models of amino acids, peptides, and proteins. Rev Sci Instrum 24(8):621–627CrossRefGoogle Scholar
  19. Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The CAVE: audio visual experience automatic virtual environment. ACM SIGGRAPH Comput Graph 35(6):64–72Google Scholar
  20. Dominjon L, Lécuyer A, Burkhardt JM, Andrade-Barroso G, Richir S (2005) The “Bubble” technique: interacting with large virtual environments using haptic devices with limited workspace. In: Proceedings of the world haptics conference (joint Eurohaptics conference and haptics symposium)Google Scholar
  21. Dominjon L, Lécuyer A, Burkhardt JM, Richir S (2006) Haptic hybrid rotations: overcoming hardware rotational limitations of force-feedback devices. In: Proceedings of the IEEE international conference on virtual reality (IEEE-VR’05)Google Scholar
  22. Ferey N, Delande O, Grasseau G, Baaden M (2008) A VR framework for interacting with molecular simulations. In: Proceedings of the international conference on virtual reality sofware and technologies (ACM-VRST’08)Google Scholar
  23. Fernandez-Recio J, Totrov M, Abagyan R (2003) ICM-DISCO docking by global energy optimization with fully flexible Side-Chains, vol 1, issue 52. Bradford Books/MIT Press, Cambridge, MA, pp 113–117Google Scholar
  24. Garcia-Ruiz MA, Guttierez-Pulido JR (2006) An overview of auditory display to assist comprehension of molecular information. Interact Comput 18(4):853–868CrossRefGoogle Scholar
  25. Ghiglione R, Landré A, Bromberg M, Molette P (1998) L’analyse automatique des contenusGoogle Scholar
  26. Gottschalk S, Lin MC, Manocha D (1996) OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd conference on computer graphics and interactive techniques, vol 30, pp 171–180Google Scholar
  27. Grosdidier A (2007) Conception d’un logiciel de docking et applications dans la recherche de nouvelles molécules actives. PhD thesis, Université Joseph Fourier Grenoble 1, FranceGoogle Scholar
  28. Hart TN, Read RJ (2004) A multiple-start Monte Carlo docking method. Proteins Struct Funct Genet 13(3):206–222Google Scholar
  29. Hermann T, Ritter H (1999) Listen to your Data: model-based sonification for data analysis, pp 189–194Google Scholar
  30. Hess B, Kutzner D, Vanderspoel C, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRefGoogle Scholar
  31. Hinsen K (2000) The molecular modeling toolkit: a new approach to molecular simulation. J Comput Chem 21:79–85CrossRefGoogle Scholar
  32. Johnson DE, Willemsen P (2003) Six Degree-of-Freedom Haptic rendering of complex polygonal models. In: Proceedings of the 11th symposium on haptic interfaces for virtual environment and teleoperator systems (HAPTICS’03)Google Scholar
  33. Katz FGB, Rio E, Picinali L, Warusfel O (2008) The effect of spatialization in a data sonification exploration tasks. In: Proceedings of the international conference on auditory display (ICAD’08)Google Scholar
  34. Kitagawa M, Dokko D, Okamura A, Yuh D (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129(1):151–158CrossRefGoogle Scholar
  35. Levine D, Facello M, Hallstrom P, Reeder G, Walenz B, Stevens F (1997) Stalk: an interactive system for virtual molecular docking. Proc IEEE Conf Comput Sci Eng 4(2):55–65CrossRefGoogle Scholar
  36. Lu T-C, Ding JH, Crivelli SN (2005) DockingShop: a tool for interactive protein docking. In: Procedings of the computational systems bioinformatics conference, pp 271–272Google Scholar
  37. Lundin KE, Sillen M, Cooper MD, Ynnerman A (2005) Haptic visualization of computational fluid dynamics data using reactive forces. In: Procedings of the society of photo-optical instrumentation engineer conference (SPIE’05), visualization and data analysis, vol 5669, pp 31–41Google Scholar
  38. Maciejewski R, Choi S, Ebert DS, Tan HZ (2005) Multi-Modal perceptualization of volumetric data and its application to molecular docking. In: Proceedings of the first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems.Google Scholar
  39. Magnani L (2005) An abductive theory of scientific reasoning. Semiotica 153(1–4):261–286CrossRefMathSciNetGoogle Scholar
  40. Moore BCJ (2003) An introduction to the psychology of hearingGoogle Scholar
  41. Pipe SW (2008) Recombinant clotting factors. Thromb Haemost 99(5):840–850Google Scholar
  42. Ray N, Cavin X, Paul JC, Maigret B (2005) Intersurf: dynamic interface between proteins. J Mol Graph Model 23(4):347–354CrossRefGoogle Scholar
  43. Richard P, Chamaret D, Inglese F-X, Lucidarme P, Ferrier J-L (2006) Human-scale haptic virtual environment for product design: effect of sensory substitution. Int J Virtual Real 5(2):37–44Google Scholar
  44. Ritchie DW (2003) Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins 52(1):98–106CrossRefGoogle Scholar
  45. Rossi R, Isorce M, Morin S, Flocard J, Arumugam K, Crouzy S, Vivaudou M, Redon S (2007) Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. Bioinformatics 23(13):408–417CrossRefGoogle Scholar
  46. Rosson MB, Carroll JM (2002) Scenario-based design. In: Jacko JA, Sears A (eds) The human-computer interaction handbook fundamentals, evolving technologies and emerging applications, pp 1032–1050Google Scholar
  47. Sanner M, Olson A, Spehner J-C (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320CrossRefGoogle Scholar
  48. Seeger A, Chen J (1997) Controlling force feedback over a network. In: Proceedings of the second PHANToM user’s group workshopGoogle Scholar
  49. Touraine D, Bourdot P, Bellik Y, Bolot L (2002) A framework to manage multimodal fusion of events for advanced interactions within virtual environments. In: Proceedings of the 8th EUROGRAPHICS workshop on virtual environment, (EGVE’2002)Google Scholar
  50. Turk M, Robertson G (2000) Perceptual user interfaces (introduction). Commun ACM 43(3):32–34CrossRefGoogle Scholar
  51. Villoutreix BO, Bastard K, Sperandio O, Fahraeus R, Poyet JL, Calvo F, Deprez B, Miteva MA (2008) In silico-in vitro screening of protein-protein interactions: towards the next generation of therapeutics. Curr Pharm Biotechnol 9(2):103–22CrossRefGoogle Scholar
  52. Walker BN, Lane DM (1994) Auditory display: sonification, audification, and auditory interfaces. Westview Press, Boulder, CO, USAGoogle Scholar
  53. Walker BN, Lane DM (2008) Sonification mappings database on the web. In: Proceedings of the international conference on auditory display (ICAD’01)Google Scholar
  54. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303CrossRefGoogle Scholar
  55. Wriggers W, Birmanns S (2003) Interactive fitting augmented by force-feedback and virtual reality. J Cell Biol 144:123–131Google Scholar
  56. Zacharias M (2005) ATTRACT: protein-protein docking in CAPRI using a reduced protein model. Proteins 60(2):252–6CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • N. Férey
    • 1
  • J. Nelson
    • 2
  • C. Martin
    • 1
  • L. Picinali
    • 5
  • G. Bouyer
    • 1
  • A. Tek
    • 1
  • P. Bourdot
    • 1
  • J. M. Burkhardt
    • 3
  • B. F. G. Katz
    • 1
  • M. Ammi
    • 1
  • C. Etchebest
    • 4
  • L. Autin
    • 4
  1. 1.Laboratoire d’Informatique et de Mécanique pour les Sciences de l’IngénieurUniversité Paris XIOrsay CedexFrance
  2. 2.Arts et Metiers ParisTech, LCPIParisFrance
  3. 3.Laboratoire Ergonomie-Comportement-InteractionsUniversité Paris VParisFrance
  4. 4.Institut National de la Santé et de la Recherche Médicale, Equipe DSIMBUniversité Paris VII, INTSParis Cedex 15France
  5. 5.Institut de Recherche et Coordination Acoustique/MusiqueParisFrance

Personalised recommendations