Advertisement

Virtual Reality

, 13:257 | Cite as

Multisensory VR exploration for computer fluid dynamics in the CoRSAIRe project

  • J. M. VézienEmail author
  • B. Ménélas
  • J. Nelson
  • L. Picinali
  • P. Bourdot
  • M. Ammi
  • B. F. G. Katz
  • J. M. Burkhardt
  • L. Pastur
  • F. Lusseyran
Original Article

Abstract

In the last 30 years, the evolution of digital data processing in terms of processing power, storage capacity, and algorithmic efficiency in the simulation of physical phenomena has allowed the emergence of the discipline known as computational fluid dynamics or CFD. More recently, virtual reality (VR) systems have proven an interesting alternative to conventional user interfaces, in particular, when exploring complex and massive datasets, such as those encountered in scientific visualization applications. Unfortunately, all too often, VR technologies have proven unsatisfactory in providing a true added value compared to standard interfaces, mostly because insufficient attention was given to the activity and needs of the intended user audience. The present work focuses on the design of a multimodal VR environment dedicated to the analysis of non-stationary flows in CFD. Specifically, we report on the identification of relevant strategies of CFD exploration coupled to adapted VR data representation and interaction techniques. Three different contributions will be highlighted. First, we show how placing the CFD expert user at the heart of the system is accomplished through a formalized analysis of work activity and through system evaluation. Second, auditory outputs providing analysis of time-varying phenomena in a spatialized virtual environment are introduced and evaluated. Finally, specific haptic feedbacks are designed and evaluated to enhance classical visual data exploration of CFD simulations.

Keywords

Virtual reality Computer fluid dynamics Sonification Haptics Multimodal virtual environment 

Notes

Acknowledgments

This work is currently supported by the ANR (French National Agency for Research) through the CoRSAIRe project of ARA-MDMSA and by the RTRA (french Thematic Network of Advanced Research) DIGITEO, through the SIMCoD project.

References

  1. Adachi Y, Kumano T, Ogino K (1995) Intermediate representation for stiff virtual objects. In: IEEE virtual reality annual international symposium ’95, Research Triangle Park, pp 203–210Google Scholar
  2. André E (2000) Handbook of natural language processing. In: Chapter “The generation of multimedia presentations”, pp 305–327Google Scholar
  3. Annett J (2003) Handbook of cognitive task design. In: Chapter Hierarchical Task Analysis, pp 17–35Google Scholar
  4. Avila RS, Sobierajski LM (1996) A haptic interaction method for volume visualization. In: 7th conference on visualization, pp 197–204. doi: 10.1109/VISUAL.1996.568108
  5. Bryson S, Levit C (1991) The virtual windtunnel: an environment for the exploration of three-dimensional unsteady flows. In: IEEE Visualization, pp 17–24Google Scholar
  6. Burdea G (1996) Force and touch feedback for VR. Wiley, ChichesterGoogle Scholar
  7. Chen K-W, Heng P-A, Sun H (2000) Direct haptic rendering of isosurface by intermediate representation. In: ACM symposium on virtual reality software and technology VRST, pp 188–194Google Scholar
  8. Chinn CA, Brewer WF (1993) The role of anomalous data in knowledge acquisition: a theoretical framework and implications for science instruction. Rev Educ Res 63(1):1–49Google Scholar
  9. Crawfis RA, Shen H-W, Max N (2000) Flow visualization techniques for CFD using volume rendering. In: 9th International symposium on flow visualizationGoogle Scholar
  10. Donker H, Klante P, Gorny P (2002) The design of auditory user interfaces for blind users. In: 2nd Nordic conference on human-computer interaction (NordiCHI ’02), vol 31. ACM, New York, pp 149–156Google Scholar
  11. Dudas R (2002) Spectral envelope correction for real-time transposition: proposal of a “floating-formant” method. In: International computer music conference (ICMC ’02), Goteborg, pp 126–129Google Scholar
  12. Ericsson KA, Simon, HA (1984/1993) Protocol analysis: Verbal reports as data (revised edition)Google Scholar
  13. Fauvet N, Ammi M, Bourdot P (2007) Experiments of haptic perception techniques for computational fluid dynamics. In: Cyber world 2007, Hannover, pp 322–329Google Scholar
  14. Flanagan JL (1965) Phase vocoder. J Acoust Soc Am 28(5):939–940CrossRefGoogle Scholar
  15. Gadouin E, Le Quéré P, Daube O (2001) A general methodology for investigating flow instability in complex geometries: application to natural convection in enclosures. Int J Numer Methods Fluids 37(2):175–208CrossRefGoogle Scholar
  16. Gherbi R, Bourdot B, Vezien JM, Herisson J, Fauvet N, Ferey N (2006) Le traité de la réalité virtuelle, vol 4: Les applications de la Réalité Virtuelle. In: Fuchs P, Moreau G, Papin J-P (eds) Chapter 4: Explorations de données scientifiques et expérimentations virtuelles. Presses de l’Ecoles de Mines de ParisGoogle Scholar
  17. Ghiglione R, Landré A, Bromberg M, Molette P (1998) L’analyse automatique des contenus [Automatic content analysis]. Dunod EdGoogle Scholar
  18. Hoppe H (1996) Progressive Meshes ACM SIGGRAPH 96. In: Computer graphics proceedings, annual conference series, pp 99–108Google Scholar
  19. Katz BFG, Warusfel O, Bourdot P, Vezien J-M (2007) CoRSAIRe—Combination of sensori-motor rendering for the immersive analysis of results. In: 2nd International workshop on interactive sonification (ISon 2007), YorkGoogle Scholar
  20. Katz BFG, Rio E, Picinali L, Warusfel O (2008) The effect of spatialization in a data sonification exploration task. In: International conference of auditory display (ICAD 2008), ParisGoogle Scholar
  21. Kramer G (ed) (1994) Auditory display: sonification, audification, and auditory interfaces. Santa Fe Institute Studies in the Sciences of Complexity, Westview Press, Santa FeGoogle Scholar
  22. Krner O, Schill M, Wagner C, Bender H-J, Mnner R (1999) Haptic volume rendering with an intermediate local representation. In: 1st International workshop on the haptic devices in medical applications, pp 79–84Google Scholar
  23. Levoy M, Rusinkiewicz S (2000) QSplat: a multiresolution point rendering system for large meshes. In: SIGGRAPH’2000, Computer graphics proceedings, annual conference series, pp 343–352Google Scholar
  24. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: ACM SIGGRAPH 87, computer graphics proceedings, annual conference series 21(4):163–169Google Scholar
  25. Lynch K (1960) The image of the city. MIT Press, Cambridge, MAGoogle Scholar
  26. Maguire M (2001) Methods to support human-centred design. Int J Hum Comput Stud 55(4):587–634zbMATHCrossRefGoogle Scholar
  27. Mark W, Randolph S, Finch M, Verth JV, Taylor RM (1996) Adding force feedback to graphics systems: issues and solutions. In: 23rd annual conference on computer graphics and interactive techniques, pp 447–452Google Scholar
  28. Menelas B, Ammi M, Bourdot P (2008) A flexible method for haptic rendering of isosurface from volumetric data. In: Lecture Notes In Computer Science, vol 5024, Proceedings of the 6th international conference on haptics: perception, devices and scenarios, pp 687–693Google Scholar
  29. Menelas B, Ammi M, Pastur L, Bourdot P (2009) Haptic exploration of an unsteady flow. In: Symposium on haptic interfaces for virtual environment and teleoperator systems (WorldHaptics 2009), pp 232–237Google Scholar
  30. Menelas B, Ammi M, Bourdot P, Richir S (2009) Survey on haptic rendering of data sets: exploration of scalar and vector. J Virtual Real Broadcast (in press)Google Scholar
  31. Nesbitt KV (2003) Designing multi-sensory displays for abstract data. PhD thesis, School of Information Technology, University of SydneyGoogle Scholar
  32. Pastur L, Lusseyran F, Faure TM, Fraigneau Y, Pethieu R, Debesse P (2008) Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number. Exp Fluids 44(4):597–608CrossRefGoogle Scholar
  33. Podvin B, Fraigneau Y, Lusseyran F, Gougat P (2006) A reconstruction method for the flow past an open cavity. J Fluids Eng. 128(3):531–540CrossRefGoogle Scholar
  34. Schnell N, Peeters G, Lemouton S, Manoury P, Rodet X (2000) Synthesizing a choir in real-time using pitch synchronous overlap add (PSOLA). In: International computer music conference, BerlinGoogle Scholar
  35. Touraine D, Bourdot P (2001) VEserver : a manager for input and haptic multi-sensorial device. In: IEEE international workshop on robot-human interactive communication (IEEE ROMAN 2001), Bordeaux and ParisGoogle Scholar
  36. Van Dam A, Forsberg AS, Laidlaw DH, LaViola JJ, Simpson RM (2000) Immersive virtual reality for scientific visualization: a progress report. IEEE Comput Graphics Appl 20(6):26–52Google Scholar
  37. Wright M, Freed A, Momeni A (2003) Open sound control: state of the art 2003. In: International conference on new interfaces for musical expression, Montreal, pp 153–159Google Scholar
  38. Ziegeler S, Moorhead RJ, Croft PJ, Lu D (2001) The MetVR case study: meteorological visualization in an immersive virtual environment. In: IEEE 12th conference on visualization (VIS’ 2001)Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • J. M. Vézien
    • 1
    Email author
  • B. Ménélas
    • 1
  • J. Nelson
    • 2
  • L. Picinali
    • 3
  • P. Bourdot
    • 1
  • M. Ammi
    • 1
  • B. F. G. Katz
    • 1
  • J. M. Burkhardt
    • 4
  • L. Pastur
    • 1
  • F. Lusseyran
    • 1
  1. 1.Laboratoire d’Informatique et de Mécanique pour les Sciences de l’IngénieurCentre National de la Recherche ScientifiqueOrsay CedexFrance
  2. 2.Laboratoire Conception de Produits et InnovationArts et Métiers ParisTechParisFrance
  3. 3.Institut de Recherche et de Coordination Acoustique/Musique, UMR CNRS 9912ParisFrance
  4. 4.ECI, Université Paris VParisFrance

Personalised recommendations