Advertisement

Cold rubidium molecule formation through photoassociation: A spectroscopic study of the 0 g - long-range state of 87 Rb 2

  • A. Fioretti
  • C. Amiot
  • C.M. Dion
  • O. Dulieu
  • M. Mazzoni
  • G. Smirne
  • C. Gabbanini

Abstract:

We report the detailed analysis of translationally cold rubidium molecule formation through photoassociation. Cold molecules are formed after spontaneous decay of photoexcited molecules from a laser cooled atomic sample, and are detected by selective mass spectroscopy after two-photon ionization into Rb 2 + ions. A spectroscopic study of the 0 g - (5S + 5P 3/2 ) pure long-range state of 87Rb2 is performed by detecting the ion yield as a function of the photoassociation laser frequency; the spectral data are theoretically analyzed within the semiclassical RKR approach. Molecular ionization is resonantly enhanced through either the 2 3 Π g or the 2 3 Σ + g intermediate molecular states. Some vibrational levels of the latter electronic state are observed and assigned here for the first time. Finally, cold molecules formation rates are calculated and compared to the experimentally measured ones, and the vibrational distribution of the formed molecules in the a 3 Σ + u ground triplet state is discussed.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 34.50.Rk Laser-modified scattering and reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© EDP Sciences, Springer-Verlag, Società Italiana di Fisica 2001

Authors and Affiliations

  • A. Fioretti
    • 1
  • C. Amiot
    • 2
  • C.M. Dion
    • 2
  • O. Dulieu
    • 2
  • M. Mazzoni
    • 3
  • G. Smirne
    • 1
  • C. Gabbanini
    • 1
  1. 1.Istituto di Fisica Atomica e Molecolare del C.N.R., via Alfieri 1, 56010 Ghezzano, Pisa, ItalyIT
  2. 2.Laboratoire Aimé Cotton, Université Paris-Sud, 91405 Orsay Cedex, FranceFR
  3. 3.Istituto di Elettronica Quantistica del C.N.R., via Panciatichi 56, 50127 Firenze, ItalyIT

Personalised recommendations