Advertisement

Nonclassical properties and algebraic characteristics of negative binomial states in quantized radiation fields

  • X.-G. Wang
  • S.-H. Pan
  • G.-Z. Yang

Abstract:

We study the nonclassical properties and algebraic characteristics of the negative binomial states introduced by Barnett recently. The ladder operator formalism and displacement operator formalism of the negative binomial states are found and the algebra involved turns out to be the SU(1,1) Lie algebra via the generalized Holstein-Primarkoff realization. These states are essentially Perelomov's SU(1,1) coherent states. We reveal their connection with the geometric states and find that they are excited geometric states. As intermediate states, they interpolate between the number states and geometric states. We also point out that they can be recognized as the nonlinear coherent states. Their nonclassical properties, such as sub-Poissonian distribution and squeezing effect are discussed. The quasiprobability distributions in phase space, namely the Q and Wigner functions, are studied in detail. We also propose two methods of generation of the negative binomial states. d 32.80.Pj Optical cooling of atoms; trapping

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational definitions of the phase of the field; phase measurements - alytical methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© EDP Sciences, Springer-Verlag, Società Italiana di Fisica 2000

Authors and Affiliations

  • X.-G. Wang
    • 1
  • S.-H. Pan
    • 1
  • G.-Z. Yang
    • 1
  1. 1.CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, P.R. China and Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P.R. ChinaCN

Personalised recommendations