The European Physical Journal D

, Volume 8, Issue 1, pp 125–129 | Cite as

Current-voltage characteristics of a non-transferred plasma spray torch

  • R. Ramasamy
  • V. SelvarajanEmail author


IV characteristics of a non-transferred DC plasma spray torch operating on argon and argon + nitrogen mixtures are reported. Arc voltage is decreased with increase in arc current and increased with increase in electrode gap. Arc power is higher at higher percentage of nitrogen in argon. Nottingham co-efficients were calculated using numerical method.


52.75.Hn Plasma torches 52.75 Rx Plasma applications in manufacturing and materials processing (etching, surface cleaning, spraying, arc welding, ion implantation, film deposition, etc.) 52.80.Mg Arcs; sparks; lightning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.I. Boulos, P. Fauchais, E. Pfender, Thermal Plasmas — Fundamentals and Applications (Plenum Press, New York, 1994).CrossRefGoogle Scholar
  2. 2.
    D.C. Schram, M.C.M. Vande Sanden, in: IEE Colloquium on Atmospheric Discharges for Chemical Synthesis, Eindhoven Univ. of Technol., Netherlands (IEE, London, UK, 1997), p. 6/1–4.Google Scholar
  3. 3.
    D. Matejka, B. Benko, Plasma Spraying of Metallic and Ceramic Materials (John Wiley & Sons ltd, Baffins Lane, Chichester, UK, 1989).Google Scholar
  4. 4.
    Ayrton, The Electric arc, London, 1902 (unpublished).Google Scholar
  5. 5.
    W.B. Nottingham, Trans. Am. Inst. El. Engrs. 42, 302 (1923).CrossRefGoogle Scholar
  6. 6.
    W.B. Nottingham, Phys. Rev. 28, 764 (1926).ADSCrossRefGoogle Scholar
  7. 7.
    R.M. Gage, US patent Specifications No. 2, 858 411 (1958).Google Scholar
  8. 8.
    K. Goldman, in Proceedings of Fifth International Conference on Phenomena in Ionized Gases, Amsterdam, North Holland, 1961.Google Scholar
  9. 9.
    R.C. Eberhart, R.A. Seban, Int. J. Heat Mass Transf. 9, 939 (1966).CrossRefGoogle Scholar
  10. 10.
    C. Krolikowski, in Proceedings of the VII international Conference on Phenomena in Ionized Gases (1966).Google Scholar
  11. 11.
    A.K. Das, K.P. Sree Kumar, N. Venkatramani, Plasma Sources Sci. Technol. 3, 108 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    N.J. Wood, J.J. Osborne, G.T. Roberts, S.B. Gabriel, Plasma Sources Sci. Technol. 6, 484 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Painkangar, K.P. Sreekumar, A.K. Das, V.S. Shirodkar, N. Venkatramani, in Proceedings of the National Symposium on Vacuum Science & Technology and Power Beams, 1997, edited by N. Venkatramani, A.K. Rai, p. 312.Google Scholar
  14. 14.
    J.-F. Brilhac, B. Pateyron, G. Deluc, J.-F. Coudert, P. Fauchais, Plasma Chem. Plasma Process. 15, 231 (1995).CrossRefGoogle Scholar
  15. 15.
    J.-F. Brilhac, B. Pateyron, J.-F. Coudert, P. Fauchais, A. Bouvier, Plasma Chem. Plasma Process. 15, 257 (1995).CrossRefGoogle Scholar
  16. 16.
    M.P. Planche, J.-F. Coudert, P. Fauchais, Plasma Chem. Plasma Process. 18, 263 (1998).CrossRefGoogle Scholar
  17. 17.
    S. Paik et al., Plasma Chem. Plasma Process. 11, 379 (1993).CrossRefGoogle Scholar
  18. 18.
    A. Capetti, E. Pfender, Plasma Chem. Plasma Process. 9, 329 (1989).CrossRefGoogle Scholar
  19. 19.
    N. Singh, J.M. Bauchire, M. Razafinimanana, J.J. Gonzalez, A. Gleizes, in Proceedings of the ICPIG, Toulouse-France, 1997, edited by M.C. Bordage, A. Gleizes, p. II–136.Google Scholar
  20. 20.
    B. Gross, Plasma technology (Lliffe, London, 1968).Google Scholar
  21. 21.
    R.H. Pennington, Introductory Computer Methods and Numerical Analysis (The Macmillan Company, New York, 1965).zbMATHGoogle Scholar
  22. 22.
    B. Pateyron, Ph.D. thesis, University of Limoges, France, 1987.Google Scholar
  23. 23.
    A. Bokhari, M.I. Boulos, Can. J. Chem. Eng. 58, 171 (1980).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica Springer-Verlag 2000

Authors and Affiliations

  1. 1.Department of physicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations