Advertisement

The European Physical Journal D

, Volume 8, Issue 1, pp 101–110 | Cite as

Quantum theory of fluctuations in a cold damped accelerometer

  • F. GrassiaEmail author
  • J. -M. Courty
  • S. Reynaud
  • P. Touboul
Article

Abstract

We present a quantum network approach to real high sensitivity measurements. Thermal and quantum fluctuations due to active as well as passive elements are taken into account. The method is applied to the analysis of the capacitive accelerometer using the cold damping technique, developed for fundamental physics in space by ONERA and the ultimate limits of this instrument are discussed. It is confirmed in this quantum analysis that the cold damping technique allows one to control efficiently the test mass motion without degrading the noise level.

PACS

42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps 04.80.Cc Experimental tests of gravitational theories 07.50.-e Electrical and electronic components, instruments, and techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bernard, P. Touboul, The GRADIO accelerometer: design and development status, Proc. ESA-NASA Workshop on the Solid Earth Mission ARISTOTELES, Anacapri, Italy, 1991.Google Scholar
  2. 2.
    P. Touboul et al., Continuation of the GRADIO accelerometer predevelopment, ONERA Final Report 51/6114PY, 62/6114PY ESTEC Contract (1992, 1993).Google Scholar
  3. 3.
    E. Willemenot, Ph.D. thesis, University Paris-Sud, 1997.Google Scholar
  4. 4.
    J.M.W. Milatz, J.J. van Zolingen, Physica XIX, 181 (1953); J.M.W. Milatz, J.J. van Zolingen, B.B. van Iperen, Physica XIX, 195 (1953).ADSCrossRefGoogle Scholar
  5. 5.
    A. Maraner, S. Vitale, J.P. Zendri, Class. Quantum Gravity 13, A129 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    D.B. Newell et al., Rev. Sci. Instr. 68, 3211 (1997); S.J. Richman et al., Rev. Sci. Instr. 69, 2531 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    D.G. Blair et al., Phys. Rev. Lett. 74, 1908 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    A. Einstein, Ann. Physik 17, 549 (1905).ADSCrossRefGoogle Scholar
  9. 9.
    H. Nyquist, Phys. Rev. 32, 110 (1928).ADSCrossRefGoogle Scholar
  10. 10.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    E.M. Lifshitz, L.P. Pitaevskii, Landau and Lifshitz, Course of Theoretical Physics, Statistical Physics Part 2 (Butterworth-Heinemann, 1980), Chap. VIII.Google Scholar
  12. 12.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Yamamoto, S. Machida, S. Saito, N. Imoto, T. Yanagawa, N. Kitagawa, G. Björk, Progress in Optics XXVIII, edited by E. Wolf (Elsevier, 1990), p. 87.Google Scholar
  14. 14.
    S. Reynaud, A. Heidmann, E. Giacobino, C. Fabre, Progress in Optics XXX, edited by E. Wolf (Elsevier, 1992), p. 1.Google Scholar
  15. 15.
    V.B. Braginsky, F.Ya. Khalili, Quantum Measurement (Cambridge University Press, 1992).Google Scholar
  16. 16.
    P. Grangier, J.M. Courty, S. Reynaud, Opt. Commun. 89,99 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    P. Bonifazi, C. Cinquegrana, E. Majorana, N. Pergola, P. Puppo, P. Rapagnani, F. Ricci, S. Vaselli, M. Visco, Phys. Lett. A 215, 141 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    M.F. Bocko, R. Onofrio, Rev. Mod. Phys. 68, 755 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    H. Heffner, Proc. IRE 50, 1604 (1962).CrossRefGoogle Scholar
  20. 20.
    H.A. Haus, J.A. Mullen, Phys. Rev. 128, 2407 (1962).ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Gordon, L.R. Walker, W.H. Louisell, Phys. Rev. 130,806 (1963).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    C.M. Caves, Phys. Rev. D 26, 1817 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    R. Loudon, T.J. Shephered, Optica Acta 31, 1243 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Yamamoto, N. Imoto, S. Machida, Phys. Rev. A 33,3243 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    A. Liebman, G.J. Milburn, Phys. Rev. A 33, 634 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    J. Meixner, J. Math. Phys. 4, 154 (1963).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    B. Yurke, J.S. Denker, Phys. Rev. A 29, 1419 (1984).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C.W. Gardiner, IBM J. Res. Dev. 32, 127 (1988).CrossRefGoogle Scholar
  29. 29.
    J.-M. Courty, S. Reynaud, Phys. Rev. A 46, 2766 (1992).ADSCrossRefGoogle Scholar
  30. 30.
    F. Grassia, Ph.D. thesis, University P. & M. Curie, 1998.Google Scholar
  31. 31.
    J.-M. Courty, F. Grassia, S. Reynaud, Europhys. Lett. 46,31 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica Springer-Verlag 2000

Authors and Affiliations

  • F. Grassia
    • 1
    Email author
  • J. -M. Courty
    • 1
  • S. Reynaud
    • 1
  • P. Touboul
    • 2
  1. 1.Laboratoire Kastler BrosseleParis Cedex 05France
  2. 2.Département de Mesures PhysiquesONERAChatillon CedexFrance

Personalised recommendations