Advertisement

Deuteron and triton production with high energy sulphur and lead beams

  • I.G. Bearden
  • H. Bøggild
  • J. Boissevain
  • P.H.L. Christiansen
  • L. Conin
  • J. Dodd
  • B. Erazmus
  • S. Esumi
  • C.W. Fabjan
  • D. Ferenc
  • A. Franz
  • J.J. Gaardhøje
  • A.G. Hansen
  • O. Hansen
  • D. Hardtke
  • H. van Hecke
  • E.B. Holzer
  • T.J. Humanic
  • P. Hummel
  • B.V. Jacak
  • K. Kaimi
  • M. Kaneta
  • T. Kohama
  • M. Kopytine
  • M. Leltchouk
  • A. Ljubičić Jr.
  • B. Lörstad
  • L. Martin
  • A. Medvedev
  • M. Murray
  • H. Ohnishi
  • G. Paić
  • S.U. Pandey
  • F. Piuz
  • J. Pluta
  • V. Polychronakos
  • M. Potekhin
  • G. Poulard
  • D. Reichhold
  • A. Sakaguchi
  • J. Schmidt-Sørensen
  • J. Simon-Gillo
  • W. Sondheim
  • T. Sugitate
  • J.P. Sullivan
  • Y. Sumi
  • W.J. Willis
  • K. Wolf
  • N. Xu
  • D.S. Zachary
Experimental physics

Abstract.

Proton and deuteron production has been observed in S+S and S+Pb collisions at 200 A\(\cdot\)GeV and in Pb+Pb reactions at 158 A\(\cdot\)GeV at the CERN SPS accelerator. For Pb+Pb triton production was also measured. The p and d spectra as well as the p and t spectra were observed in similar rapidity ranges and over similar ranges of transverse momenta per nucleon, making it possible to interpret the cross sections of the composite particles in terms of coalescence mechanisms. Volumes of homogeneity were extracted and compared to pion-pair HBT interferometry results. Special attention is given to the dependence on transverse mass, centrality and rapidity.

Keywords

Composite Particle Similar Range Similar Rapidity Rapidity Range Transverse Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg / Società Italiana di Fisica 2002

Authors and Affiliations

  • I.G. Bearden
    • 1
  • H. Bøggild
    • 1
  • J. Boissevain
    • 2
  • P.H.L. Christiansen
    • 1
  • L. Conin
    • 4
  • J. Dodd
    • 3
  • B. Erazmus
    • 4
  • S. Esumi
    • 5
  • C.W. Fabjan
    • 6
  • D. Ferenc
    • 7
  • A. Franz
    • 6
  • J.J. Gaardhøje
    • 1
  • A.G. Hansen
    • 1
  • O. Hansen
    • 1
  • D. Hardtke
    • 9
  • H. van Hecke
    • 2
  • E.B. Holzer
    • 6
  • T.J. Humanic
    • 9
  • P. Hummel
    • 6
  • B.V. Jacak
    • 10
  • K. Kaimi
    • 5
  • M. Kaneta
    • 5
  • T. Kohama
    • 5
  • M. Kopytine
    • 10
  • M. Leltchouk
    • 3
  • A. Ljubičić Jr.
    • 7
  • B. Lörstad
    • 11
  • L. Martin
    • 4
  • A. Medvedev
    • 3
  • M. Murray
    • 8
  • H. Ohnishi
    • 5
  • G. Paić
    • 6
  • S.U. Pandey
    • 9
  • F. Piuz
    • 6
  • J. Pluta
    • 4
  • V. Polychronakos
    • 12
  • M. Potekhin
    • 3
  • G. Poulard
    • 6
  • D. Reichhold
    • 9
  • A. Sakaguchi
    • 5
  • J. Schmidt-Sørensen
    • 11
  • J. Simon-Gillo
    • 2
  • W. Sondheim
    • 2
  • T. Sugitate
    • 5
  • J.P. Sullivan
    • 2
  • Y. Sumi
    • 5
  • W.J. Willis
    • 3
  • K. Wolf
    • 8
  • N. Xu
    • 2
  • D.S. Zachary
    • 9
  1. 1.Niels Bohr Institute, 2100 Copenhagen, Denmark DK
  2. 2.Los Alamos National Laboratory, Los Alamos, NM 87545, USA US
  3. 3.Department of Physics, Columbia University, New York, NY 10027, USA US
  4. 4.Nuclear Physics Laboratory of Nantes, 44072 Nantes, France FR
  5. 5.Hiroshima University, Higashi-Hiroshima 739-8526, Japan JP
  6. 6.CERN, 1211 Geneva 23, Switzerland CH
  7. 7.Rudjer Bošković Institute, Zagreb, Croatia HR
  8. 8.Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA US
  9. 9.Department of Physics, The Ohio State University, Columbus, OH 43210, USA US
  10. 10.State University of New York, Stony Brook, NY 11973, USA US
  11. 11.Department of Physics, University of Lund, 22362 Lund, Sweden SE
  12. 12.Brookhaven National Laboratory, Upton, NY 11973, USA US

Personalised recommendations