Universality in three dimensional random-field ground states

  • A.K. Hartmann
  • U. Nowak


We investigate the critical behavior of three-dimensional random-field Ising systems with both Gauss and bimodal distribution of random fields and additional the three-dimensional diluted Ising antiferromagnet in an external field. These models are expected to be in the same universality class. We use exact ground-state calculations with an integer optimization algorithm and by a finite-size scaling analysis we calculate the critical exponents \(\), \(\), and \(\). While the random-field model with Gauss distribution of random fields and the diluted antiferromagnet appear to be in same universality class, the critical exponents of the random-field model with bimodal distribution of random fields seem to be significantly different.

PACS. 05.70.Jk Critical point phenomena - 64.60.Fr Equilibrium properties near critical points, critical exponents - 75.10.Hk Classical spin models - 75.50.Lk Spin glasses and other random magnets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© EDP Sciences, Springer-Verlag 1999

Authors and Affiliations

  • A.K. Hartmann
    • 1
  • U. Nowak
    • 2
  1. 1.Institut für theoretische Physik, Philosophenweg 19, 69120 Heidelberg, GermanyDE
  2. 2.Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität-Duisburg, 47048 Duisburg, GermanyDE

Personalised recommendations