Advertisement

Towards log-normal statistics in high Reynolds number turbulence

  • A. Arneodo
  • S. Manneville
  • J.F. Muzy

Abstract.

We report on the experimental application of a wavelet based deconvolution method that has been recently emphasized as a very efficient tool to extract some underlying multiplicative cascade process from synthetic turbulent signals. For high Reynolds number wind tunnel turbulence (Rλ≃ 2000), using large velocity records (about 25 × 103 integral time scales), a cascading process is identified and found to be log-normal. This results relies on the Gaussian shape of the kernel G aa' that determines the nature of the cascade from a scale a' to a finer scale a. It is confirmed by investigating various standard quantities such as the probability density functions of the wavelet transform coefficients or the scaling exponents ς q that characterize the evolution across the scales of the moments of these distributions. Log-normal statistics are shown to hold on a well defined range of scales, that can be further used as an objective definition of the inertial range, and to depend on the Reynolds number. We comment on the asymptotic validity of the log-normal multifractal description.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics - 47.27.Gs Isotropic turbulence; homogeneous turbulence - 47.27.Jv High-Reynolds-number turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© EDP Sciences, Springer-Verlag 1998

Authors and Affiliations

  • A. Arneodo
    • 1
  • S. Manneville
    • 1
  • J.F. Muzy
    • 1
  1. 1.Centre de Recherche Paul Pascal (CNRS, UPR 8641), Université Bordeaux I, avenue Schweitzer, 33600 Pessac, FranceFR

Personalised recommendations