Advertisement

The Fermi-sea-like limit of the composite fermion wave function

  • O. Ciftja

Abstract:

The experimentally observed filling factors of the fractional quantum Hall effect can be described in terms of the composite fermion wave function of the Jastrow-Slater form [0pt] \(\) fully projected into the lowest Landau level. The Slater determinant of the above composite fermion wave function represents the filled Landau levels of composite fermions evaluated at the corresponding reduced magnetic field. For a system of fermions studied in the thermodynamic limit, we prove that in the even-denominator-filled state limit (when the number of filled Landau levels of composite fermions becomes infinite), the above composite fermion wave function exactly transforms into the Rezayi-Read Fermi-sea-like wave function [0pt] \(\) constructed by attaching 2m flux quanta to the Slater determinant of two-dimensional free fermions at the density corresponding to that filling. We study the composite fermion wave function and its evolution into the Fermi-sea-like wave function for a range of filling factors very close to the even-denominator-filled state.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) - 73.40.Hm Quantum Hall effect (integer and fractional) - 71.27.+a Strongly correlated electron systems; heavy fermions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© EDP Sciences, Springer-Verlag, Società Italiana di Fisica 2000

Authors and Affiliations

  • O. Ciftja
    • 1
  1. 1.Ames Laboratory, Iowa State University, Ames, Iowa 50011, USAUS

Personalised recommendations