Advertisement

Notfall + Rettungsmedizin

, Volume 21, Issue 8, pp 673–681 | Cite as

TASER-Einsatz – ein notfallmedizinisches Problemfeld?

  • T. Wunderlich
  • F. Josse
  • M. Helm
  • M. Bernhard
  • S. Wolters
  • B. Ondruschka
  • B. Hossfeld
Leitthema
  • 191 Downloads

Zusammenfassung

Beim TASER handelt es sich um eine Elektroschockwaffe (engl. Conducted Electrical Weapon, CEW), aus der zwei kleine Pfeile auf eine eigen- oder fremdgefährdende Person mit dem Ziel der Immobilisation verschossen werden. Bis zu einer Distanz von 10,6 m sind diese Pfeile über feine Drähte mit der Waffe verbunden und führen durch die Abgabe elektrischer Impulse mit durchschnittlich 1,9 mA und einer Spitzenspannung von 1900 V zur Unterbindung von Muskeleigenbewegungen der Zielperson. Während der Bewegungsunfähigkeit kann die Person dann von Polizei- oder Sicherheitspersonal überwältigt werden. Als Nebenwirkungen können im Moment des Einwirkens u. a. Herzrhythmusstörungen auftreten. Allerdings sind Verletzungen durch einen unkontrollierten Sturz der Zielperson infolge der Bewegungsunfähigkeit, Immobilisationstechniken, vorbestehende psychiatrische Erkrankungen oder eine akute (Drogen‑)Intoxikation deutlich häufiger der Vorstellungsgrund in der Notfallaufnahme als die Arrhythmien. Im notfallmedizinischen Management nach einem TASER-Einsatz sind daher die Erhebung einer Anamnese, die klinische Untersuchung zur Detektion von Verletzungen und der Ausschluss einer Eigen- oder Fremdgefährdung ebenso wichtig wie die Ableitung eines 12-Kanal-EKG. Bei einem unauffälligen 12-Kanal-EKG ist auch im weiteren Verlauf nicht mit TASER-assoziierten Herzrhythmusstörungen zu rechnen. Der vorliegende Beitrag gibt anhand eines Fallbeispiels und der Diskussion der Literatur Empfehlungen für das notfallmedizinische Management nach einem TASER-Einsatz.

Schlüsselwörter

Conducted Electrical Weapon Elektroschock Polizei Herzrhythmusstörrungen Verletzungen 

TASER—a problem in emergency medicine?

Abstract

A TASER is a conducted electrical weapon shooting two small darts which stay connected to the weapon along small wires allowing an electrical impulse of 1.9 mA and up to 1900 V to be used against an aggressive person preventing controlled muscle movement at a distance of up to 10.6 m. The electric current may cause cardiac arrhythmias, but injuries due to uncontrolled falls and pre-existing (drug) intoxications lead to hospital admissions more often than arrhythmias do. Handling of tasered person includes medical history as well as clinical examination to detect any injuries or hints of endangerment to self or others and finally a 12-lead electrocardiogram (ECG). If the 12-lead ECG of a tasered person does not show any pathologic findings, there is no need for further monitoring or hospital admission, beside injuries or intoxication. This article describes the management of tasered persons from an emergency physician’s point of view starting from a case report and discussion of the scientific literature.

Keywords

Conducted Electrical Weapon Conducted electrical weapon Police Cardiac arrhythmias Injuries 

Notes

Danksagung

Die Autoren danken Sylvi Thierbach für die Erstellung der Fotos und dem SEK Baden-Württemberg für die gute Zusammenarbeit und die sachdienlichen Informationen aus dem praktischen Einsatz.

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Wunderlich, F. Josse, M. Helm, M. Bernhard, S. Wolters, B. Ondruschka und B. Hossfeld geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Al-Jarabah M, Coulston J, Hewin D (2008) Pharyngeal perforation secondary to electrical shock from a TASER gun. Emerg Med J 25:378CrossRefPubMedGoogle Scholar
  2. 2.
    Anders S, Junge M, Schulz F, Püschel K (2003) Cutaneous current marks due to a stun gun injury. J Forensic Sci 48:640–642CrossRefPubMedGoogle Scholar
  3. 3.
    Bailey B, Gaudreault P, Thivierge RL (2007) Cardiac monitoring of high-risk patients after an electrical injury: a prospective multicentre study. Emerg Med J 24:348–352CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Biria M, Bommana S, Kroll M et al (2010) Multi-organ effects of conducted electrical weapons (CEW)— a review. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2010, S 1266–1270Google Scholar
  5. 5.
    Bozeman WP, Hauda WE, Heck JJ et al (2009) Safety and injury profile of conducted electrical weapons used by law enforcement officers against criminal suspects. Ann Emerg Med 53:480–489CrossRefPubMedGoogle Scholar
  6. 6.
    Bozeman WP, Teacher E, Winslow JE (2012) Transcardiac conducted electrical weapon (TASER) probe deployments: incidence and outcomes. J Emerg Med 43:970–975CrossRefPubMedGoogle Scholar
  7. 7.
    Bozeman WP, Winslow JE (2004) Medical aspects of less lethal weapons. Int J Rescue Disaster Med 5. http://ispub.com/IJRDM/5/1/7142
  8. 8.
    Bui ET, Sourkes M, Wennberg R (2009) Generalized tonic-clonic seizure after a TASER shot to the head. CMAJ 180:625–626CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Burdett-Smith P (1997) Stun gun injury. J Accid Emerg Med 14:402–404CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cao M, Shinbane JS, Gillberg JM, Saxon LA (2007) Taser-induced rapid ventricular myocardial capture demonstrated by pacemaker intracardiac electrograms. J Cardiovasc Electrophysiol 18:876–879CrossRefPubMedGoogle Scholar
  11. 11.
    Criscione JC, Kroll MW (2014) Incapacitation recovery times from a conductive electrical weapon exposure. Forensic Sci Med Pathol 10:203–207CrossRefPubMedGoogle Scholar
  12. 12.
    Dawes DM, Ho JD, Johnson MA et al (2008) 15-Second conducted electrical weapon exposure does not cause core temperature elevation in non-environmentally stressed resting adults. Forensic Sci Int 176:253–257CrossRefPubMedGoogle Scholar
  13. 13.
    Dawes DM, Ho JD, Reardon RF, Miner JR (2010) The cardiovascular, respiratory, and metabolic effects of a long duration electronic control device exposure in human volunteers. Forensic Sci Med Pathol 6:268–274CrossRefPubMedGoogle Scholar
  14. 14.
    Dawes DM, Ho JD, Reardon RF et al (2010) The physiologic effects of multiple simultaneous electronic control device discharges. West J Emerg Med 11:49–56PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dawes DM, Ho JD, Reardon RF et al (2011) The respiratory, metabolic, and neuroendocrine effects of a new generation electronic control device. Forensic Sci Int 207:55–60CrossRefPubMedGoogle Scholar
  16. 16.
    Dawes DM, Ho JD, Sweeney JD et al (2011) The effect of an electronic control device on muscle injury as determined by creatine kinase enzyme. Forensic Sci Med Pathol 7:3–8CrossRefPubMedGoogle Scholar
  17. 17.
    Dawes D, Ho J, Vincent AS et al (2018) The neurocognitive effects of a conducted electrical weapon compared to high intensity interval training and alcohol intoxication—implications for Miranda and consent. J Forensic Leg Med 53:51–57CrossRefPubMedGoogle Scholar
  18. 18.
    Esquivel AO, Dawe EJ, Sala-Mercado JA et al (2007) The physiologic effects of a conducted electrical weapon in swine. Ann Emerg Med 50:576–583CrossRefPubMedGoogle Scholar
  19. 19.
    Fieseler S, Zinke B, Peschel O, Kunz SN (2011) Elektrowaffe TASER. Rechtsmedizin 21:535–540CrossRefGoogle Scholar
  20. 20.
    Fish RM, Geddes LA (2001) Effects of stun guns and tasers. Lancet 358:687–688CrossRefPubMedGoogle Scholar
  21. 21.
    Flower R (2016) Statement on the Medical Implications of Use of the TASER X2 Conducted Energy Device System. 1st ed. [ebook] London: Scientific Advisory Committee on the Medical Implications of Less-Lethal Weapons. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/595242/Medical_Statement_on_the_TASER_X2_system.pdf. Zugegriffen: 4. Apr. 2017Google Scholar
  22. 22.
    Gardner AR, Hauda WE, Bozeman WP (2012) Conducted electrical weapon (TASER) use against minors: a shocking analysis. Pediatr Emerg Care 28:873–877CrossRefPubMedGoogle Scholar
  23. 23.
    Grassberger M, Türk EE, Yen K (2013) Klinisch-forensische Medizin: Interdisziplinärer Praxisleitfaden für Ärzte, Pflegekräfte, Juristen und Betreuer von Gewaltopfern. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  24. 24.
    Han JS, Chopra A, Carr D (2009) Ophthalmic injuries from a TASER. Can J Emerg Med 11:90–93Google Scholar
  25. 25.
    Haegeli LM, Sterns LD, Adam DC, Leather RA (2006) Effect of a TASER shot to the chest of a patient with an implantable defibrillator. Heart Rhythm 3:339–341CrossRefPubMedGoogle Scholar
  26. 26.
    Hinchey PR, Subramaniam G (2009) Pneumothorax as a complication after TASER activation. Prehosp Emerg Care 13:532–535CrossRefPubMedGoogle Scholar
  27. 27.
    Ho JD, Dawes DM, Bultman LL et al (2007) Respiratory effect of prolonged electrical weapon application on human volunteers. Acad Emerg Med 14:197–201CrossRefPubMedGoogle Scholar
  28. 28.
    Ho JD, Dawes DM, Bultman LL et al (2009) Prolonged TASER use on exhausted humans does not worsen markers of acidosis. Am J Emerg Med 27:413–418CrossRefPubMedGoogle Scholar
  29. 29.
    Ho JD, Dawes DM, Cole JB et al (2009) Lactate and pH evaluation in exhausted humans with prolonged TASER X26 exposure or continued exertion. Forensic Sci Int 190:80–86CrossRefPubMedGoogle Scholar
  30. 30.
    Ho JD, Dawes DM, Chang RJ et al (2014) Physiologic effects of a new-generation conducted electrical weapon on human volunteers. J Emerg Med 46:428–435CrossRefPubMedGoogle Scholar
  31. 31.
    Ho JD, Heegaard WG, Dawes DM et al (2009) Unexpected arrest-related deaths in america: 12 months of open source surveillance. West J Emerg Med 10:68–73PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ho JD, Dawes DM, Reardon RF et al (2011) Human cardiovascular effects of a new generation conducted electrical weapon. Forensic Sci Int 204:50–57CrossRefPubMedGoogle Scholar
  33. 33.
    Ho JD, Miner JR, Lakireddy DR et al (2006) Cardiovascular and physiologic effects of conducted electrical weapon discharge in resting adults. Acad Emerg Med 13:589–595CrossRefPubMedGoogle Scholar
  34. 34.
    Ho JD, Reardon RF, Heegaard WG (2005) Deaths in police custody: an 8 month surveillance study. Ann Emerg Med 46:94CrossRefGoogle Scholar
  35. 35.
    Jauchem JR, Sherry CJ, Fines DA, Cook MC (2006) Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Sus scrofa following repeated TASER exposures. Forensic Sci Int 161:20–30CrossRefPubMedGoogle Scholar
  36. 36.
    Jauchem JR, Cook MC, Beason CW (2008) Blood factors of Sus scrofa following a series of three TASER electronic control device exposures. Forensic Sci Int 175:166–170CrossRefPubMedGoogle Scholar
  37. 37.
    Jauchem JR (2010) Deaths in custody: are some due to electronic control devices (including TASER devices) or excited delirium? J Forensic Leg Med 17:1–7CrossRefPubMedGoogle Scholar
  38. 38.
    Jauchem JR, Seaman RL, Fines DA (2011) Survival of anesthetized Sus scrofa after cycling (7-second on/3-second off) exposures to an electronic control device for 3 min. Am J Forensic Med Pathol 32:124–130CrossRefPubMedGoogle Scholar
  39. 39.
    Jenkinson E, Neeson C, Bleetman A (2006) The relative risk of police use-of-force options: evaluating the potential for deployment of electronic weaponry. J Clin Forensic Med 13:229–241CrossRefPubMedGoogle Scholar
  40. 40.
    Jey A, Hull P, Kravchuk V et al (2016) Emergent diagnosis and management of TASER penetrating ocular injury. Am J Emerg Med 34:1740.e 3–1740.e 5CrossRefGoogle Scholar
  41. 41.
    Kim PJ, Franklin WH (2005) Ventricular fibrillation after stun-gun discharge. N Engl J Med 353:958–959CrossRefPubMedGoogle Scholar
  42. 42.
    Koscove EM (1985) The TASER weapon: a new emergency medicine problem. Ann Emerg Med 14:1205–1208CrossRefPubMedGoogle Scholar
  43. 43.
    Koscove EM (1987) TASER dart ingestion. J Emerg Med 5:493–498CrossRefPubMedGoogle Scholar
  44. 44.
    Kroll MW (2009) Physiology and pathology of TASER electronic control devices. J Forensic Leg Med 16:173–177CrossRefPubMedGoogle Scholar
  45. 45.
    Kroll MW, Lakkireddy D, Rahko PS, Panescu D (2011) Ventricular fibrillation risk estimation for conducted electrical weapons: critical convolutions. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2011, S 271–277Google Scholar
  46. 46.
    Kroll MW, Ritter MB, Guilbault RA, Panescu D (2016) Infection risk from conducted electrical weapon probes: what do we know? J Forensic Sci 61:1556–1562CrossRefPubMedGoogle Scholar
  47. 47.
    Kroll MW, Adamec J, Wetli CV, Williams HE (2016) Fatal traumatic brain injury with electrical weapon falls. J Forensic Leg Med 43:12–19CrossRefPubMedGoogle Scholar
  48. 48.
    Kroll MW, Ritter MB, Kennedy EA et al (2018) Eye injury from electrical weapon probes: mechanisms and treatment. Am J Emerg Med.  https://doi.org/10.1016/j.ajem.2018.06.004 CrossRefPubMedGoogle Scholar
  49. 49.
    Kunz SN, Monticelli F, Kaiser C (2012) Tod durch Elektroschockdistanzwaffen. Rechtsmedizin 22:369–373CrossRefGoogle Scholar
  50. 50.
    Kunz SN, Grove N, Fischer F (2012) Acute pathophysiological influences of conducted electrical weapons in humans: a review of current literature. Forensic Sci Int 221:1–4CrossRefPubMedGoogle Scholar
  51. 51.
    Kunz SN, Brandtner H, Monticelli F (2012) Wirkung, Anwendungsgebiete und forensischer Nachweis des elektrischen Stroms im menschlichen Körper. Rechtsmedizin 6:495–505CrossRefGoogle Scholar
  52. 52.
    Kunz SN, Aronshtam J, Tränkler H‑R et al (2014) Cardiac changes due to electronic control devices? A computer-based analysis of electrical effects at the human heart caused by an ECD pulse applied to the body’s exterior. J Forensic Sci 59:659–664CrossRefPubMedGoogle Scholar
  53. 53.
    Kunz SN, Adamac J (2017) Kardiale Aspekte von Elektroschockdistanzwaffen. Rechtsmedizin 27:79–86CrossRefGoogle Scholar
  54. 54.
    Kunz SN, Adamec J (2018) A comparative brief on conducted electrical weapon safety. Wien Med Wochenschr.  https://doi.org/10.1007/s10354-018-0616-4 CrossRefPubMedGoogle Scholar
  55. 55.
    Kunz SN, Calkins HG, Adamec J, Kroll MW (2018) Adrenergic and metabolic effects of electrical weapons: review and meta-analysis of human data. Int J Legal Med 99:2268–2275Google Scholar
  56. 56.
    Kunz SN, Calkins H, Adamec J, Kroll MW (2018) Cardiac and skeletal muscle effects of electrical weapons. Forensic Sci Med Pathol 14(3):358–366CrossRefPubMedGoogle Scholar
  57. 57.
    Lakkireddy D, Khasnis A, Antenacci J et al (2007) Do electrical stun guns (TASER-X26) affect the functional integrity of implantable pacemakers and defibrillators? Europace 9:551–556CrossRefPubMedGoogle Scholar
  58. 58.
    Lakkireddy D, Wallick D, Verma A et al (2008) Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin Electrophysiol 31:398–408CrossRefPubMedGoogle Scholar
  59. 59.
    Le Blanc-Louvry I, Gricourt C, Touré E et al (2012) A brain penetration after TASER injury: controversies regarding TASER gun safety. Forensic Sci Int 221:e7–11CrossRefPubMedGoogle Scholar
  60. 60.
    Levine SD, Sloane CM, Chan TC et al (2007) Cardiac monitoring of human subjects exposed to the taser. J Emerg Med 33:113–117CrossRefPubMedGoogle Scholar
  61. 61.
    Li JY, Hamill MB (2013) Catastrophic globe disruption as a result of a TASER injury. J Emerg Med 44:65–67CrossRefPubMedGoogle Scholar
  62. 62.
    Mamede S, Van Gog T, Schuit SCE et al (2017) Why patients’ disruptive behaviours impair diagnostic reasoning: a randomised experiment. BMJ Qual Saf 26:13–18CrossRefPubMedGoogle Scholar
  63. 63.
    Mehl LE (1992) Electrical injury from Tasering and miscarriage. Acta Obstet Gynecol Scand 71:118–123CrossRefPubMedGoogle Scholar
  64. 64.
    Ordog GJ, Wasserberger J, Schlater T, Balasubramanium S (1987) Electronic gun (Taser) injuries. Ann Emerg Med 16:73–78CrossRefPubMedGoogle Scholar
  65. 65.
    Panescu D, Kroll M, Brave M (2015) Cardiac fibrillation risks with TASER conducted electrical weapons. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2015, S 323–329Google Scholar
  66. 66.
    Peel M (2017) Assessment of people who have been tasered. Emerg Nurse 25:22–29CrossRefPubMedGoogle Scholar
  67. 67.
    Rafailov L, Temnogorod J, Tsai FF, Shinder R (2017) Impaled orbital TASER probe injury requiring primary enucleation. Ophthal Plast Reconstr Surg 33:S176–S177CrossRefPubMedGoogle Scholar
  68. 68.
    Rehman T‑U, Yonas H, Marinaro J (2007) Intracranial penetration of a TASER dart. Am J Emerg Med 25:733.e 3–733.e 4CrossRefGoogle Scholar
  69. 69.
    Robb M, Close B, Furyk J, Aitken P (2009) Review article: emergency department implications of the TASER. Emerg Med Australas 21:250–258PubMedGoogle Scholar
  70. 70.
    Roberts S, Meltzer JA (2013) An evidence-based approach to electrical injuries in children. Pediatr Emerg Med Pract 10:16–17Google Scholar
  71. 71.
    Scherr C, de Carvalho AC, Belem LJ et al (2016) Cardiovascular effects of SPARK conducted electrical weapon in healthy subjects. Int J Cardiol 225:123–127CrossRefPubMedGoogle Scholar
  72. 72.
    Searle J, Slagman A, Maaß W, Möckel M (2013) Cardiac monitoring in patients with electrical injuries. An analysis of 268 patients at the Charité Hospital. Dtsch Arztebl Int 110:847–853PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sloane CM, Chan TC, Levine SD et al (2008) Serum troponin I measurement of subjects exposed to the TASER X‑26. J Emerg Med 35:29–32CrossRefPubMedGoogle Scholar
  74. 74.
    Sloane CM, Chan TC, Vilke GM (2008) Thoracic spine compression fracture after TASER activation. J Emerg Med 34:283–285CrossRefPubMedGoogle Scholar
  75. 75.
    Stopyra JP, Winslow JE, Fitzgerald DM, Bozeman WP (2017) Intracardiac electrocardiographic assessment of precordial TASER shocks in human subjects: A pilot study. J Forensic Leg Med 52:70–74CrossRefPubMedGoogle Scholar
  76. 76.
    Vanga SR, Bommana S, Kroll MW et al (2009) TASER conducted electrical weapons and implanted pacemakers and defibrillators. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2009, S 3199–3204Google Scholar
  77. 77.
    Vanmeenen KM, Lavietes MH, Cherniack NS et al (2013) Respiratory and cardiovascular response during electronic control device exposure in law enforcement trainees. Front Physiol 4:78CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    VanMeenen KM, Cherniack NS, Bergen MT et al (2010) Cardiovascular evaluation of electronic control device exposure in law enforcement trainees: a multisite study. J Occup Environ Med 52:197–201CrossRefPubMedGoogle Scholar
  79. 79.
    Vilke GM, Bozeman WP, Chan TC (2011) Emergency department evaluation after conducted energy weapon use: review of the literature for the clinician. J Emerg Med 40:598–604CrossRefPubMedGoogle Scholar
  80. 80.
    Vilke GM, Sloane CM, Bouton KD et al (2007) Physiological effects of a conducted electrical weapon on human subjects. Ann Emerg Med 50:569–575CrossRefPubMedGoogle Scholar
  81. 81.
    Vilke GM, Sloane CM, Suffecool A et al (2009) Physiologic effects of the TASER after exercise. Acad Emerg Med 16:704–710CrossRefPubMedGoogle Scholar
  82. 82.
    Winslow JE, Bozeman WP, Fortner MC, Alson RL (2007) Thoracic compression fractures as a result of shock from a conducted energy weapon: a case report. Ann Emerg Med 50:584–586CrossRefPubMedGoogle Scholar
  83. 83.
    Wu J‑Y, Sun H, O’Rourke AP et al (2008) TASER blunt probe dart-to-heart distance causing ventricular fibrillation in pigs. Ieee Trans Biomed Eng 55:2768–2771CrossRefPubMedGoogle Scholar
  84. 84.
    Zipes DP (2012) Sudden cardiac arrest and death following application of shocks from a TASER electronic control device. Circulation 125:2417–2422CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • T. Wunderlich
    • 1
  • F. Josse
    • 1
    • 2
    • 3
  • M. Helm
    • 1
    • 2
  • M. Bernhard
    • 4
  • S. Wolters
    • 4
  • B. Ondruschka
    • 5
  • B. Hossfeld
    • 1
    • 2
    • 3
  1. 1.Klinik für Anästhesiologie, Intensivmedizin, Notfallmedizin u. Schmerztherapie, Notfallmedizinisches ZentrumBundeswehrkrankenhausUlmDeutschland
  2. 2.Arbeitsgruppe „Taktische Medizin“ des Arbeitskreises Notfallmedizin der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI)NürnbergDeutschland
  3. 3.Tactical Rescue and Emergency Medicine Association (TREMA) e. V.UlmDeutschland
  4. 4.Zentrale NotaufnahmeUniversitätsklinikum DüsseldorfDüsseldorfDeutschland
  5. 5.Institut für RechtsmedizinUniversität LeipzigLeipzigDeutschland

Personalised recommendations