Notfall + Rettungsmedizin

, Volume 12, Issue 3, pp 176–180 | Cite as

Interaktion von Volumentherapie und Gerinnung

Leitthema

Zusammenfassung

Viele Volumenersatzmittel können die Gerinnung neben einem unspezifischen Verdünnungseffekt auch spezifisch beeinflussen. Zu den spezifischen Effekten zählen die Erniedrigung der Faktor VIII- und der Von-Willebrand-Faktor-Aktivität, eine Störung der Fibrinpolymerisation, eine Verlängerung der Blutungszeit und ein negativer Einfluss auf die Thrombozytenfunktion. Dabei gibt es deutliche Unterschiede zwischen den verschiedenen Substanzen. Kristalloide und Albumin weisen primär nur einen Verdünnungseffekt auf. Hydroxyethylstärke (HES) mit einem hohen Molekulargewicht (HMW) und Dextrane beeinträchtigen die Gerinnung erheblich und sollten daher beim blutenden oder blutungsgefährdeten Patienten gänzlich vermieden werden. Gelatine und HES mit einem niedrigen Molekulargewicht (LMW) und Substitutionsgrad beeinflussen vor allem die Fibrinpolymerisation, besonders bei jungen Patienten mit niedrigen Fibrinogenspiegeln muss frühzeitig mit einer beeinträchtigten Gerinnselbildung gerechnet werden. Die Kofaktoren Azidose und Hypothermie können das Hämostasepotential ebenfalls schwer beeinträchtigen und sollten daher konsequent therapiert werden. Die Gabe von balanzierten Lösungen scheint sich über die Vermeidung einer hyperchlorämischen Azidose günstig auf die Gerinnung auszuwirken.

Schlagwörter

Polytrauma Volumenersatzmittel Hämostase Azidose Hypothermie 

Interaction between volume therapy and coagulation

Abstract

Apart from haemodilution many volume substitutes can additionally influence haemostasis through specific ways of action. Specific effects include decreased activity of factor VIII and von Willebrand factor (vWF), prolongation of bleeding time, inhibition of fibrin polymerisation and induction of platelet dysfunction. Crystalloids and albumin only initiate haemodilution. Hydroxyethyl starch (HES) with a high molecular weight (HMW) and dextran significantly impair coagulation by specific effects and thus should be avoided in patients with active bleeding or risk of bleeding. Gelatin and HES with low molecular weights (LMW) may impair fibrin polymerisation. In young patients with low serum fibrinogen levels timely substitution of fibrinogen must be considered. The haemostatic co-factors acidosis and hypothermia contribute to impairment of coagulation in a relevant manner and thus should be treated effectively. Balanced solutions reduce the incidence of hyperchloraemic acidosis and thereby also coagulopathic effects.

Keywords

Multiple trauma Plasma substitutes Haemostasis Acidosis Hypothermia 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Arellano R, Gan BS, Salpeter MJ et al (2005) A triple-blinded randomized trial comparing the hemostatic effects of large-dose 10% hydroxyethyl starch 264/0.45 versus 5% albumin during major reconstructive surgery. Anesth Analg 100:1846–1853PubMedCrossRefGoogle Scholar
  2. 2.
    Brohi K, Cohen MJ, Ganter MT et al (2008) Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 64:1211–1217PubMedCrossRefGoogle Scholar
  3. 3.
    De Jonge E, Levi M, Berends F et al (1998) Impaired haemostasis by intravenous administration of a gelatin-based plasma expander in human subjects. Thromb Haemost 79:286–290Google Scholar
  4. 4.
    De Jonge E, Levi M, Buller HR et al (2001) Decreased circulating levels of von Willebrand factor after intravenous administration of a rapidly degradable hydroxyethyl starch (HES 200/0.5/6) in healthy human subjects. Intensive Care Med 27:1825–1829CrossRefGoogle Scholar
  5. 5.
    Franz A, Braunlich P, Gamsjager T et al (2001) The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 92:1402–1407PubMedCrossRefGoogle Scholar
  6. 6.
    Fries D, Innerhofer P, Klingler A et al (2002) The effect of the combined administration of colloids and lactated Ringer’s solution on the coagulation system: an in vitro study using thrombelastograph coagulation analysis (ROTEG). Anesth Analg 94:1280–1287PubMedCrossRefGoogle Scholar
  7. 7.
    Fries D, Innerhofer P, Reif C et al (2006) The effect of fibrinogen substitution on reversal of dilutional coagulopathy: an in vitro model. Anesth Analg 102:347–351PubMedCrossRefGoogle Scholar
  8. 8.
    Fries D, Streif W, Margreiter J et al (2004) The effects of perioperatively administered crystalloids and colloids on concentrations of molecular markers of activated coagulation and fibrinolysis. Blood Coagul Fibrinolysis 15:213–219PubMedCrossRefGoogle Scholar
  9. 9.
    Haas T, Fries D, Holz C et al (2008) Less impairment of hemostasis and reduced blood loss in pigs after resuscitation from hemorrhagic shock using the small-volume concept with hypertonic saline/hydroxyethyl starch as compared to administration of 4% gelatin or 6% hydroxyethyl starch solution. Anesth Analg 106:1078–1086PubMedCrossRefGoogle Scholar
  10. 10.
    Haas T, Preinreich A, Oswald E et al (2007) Effects of albumin 5% and artificial colloids on clot formation in small infants. Anaesthesia 62:1000–1007PubMedCrossRefGoogle Scholar
  11. 11.
    Hess JR (2007) Blood and coagulation support in trauma care. Hematology Am Soc Hematol Educ Program 187–191Google Scholar
  12. 12.
    Hess JR, Brohi K, Dutton RP et al (2008) The coagulopathy of trauma: a review of mechanisms. J Trauma 65:748–754PubMedCrossRefGoogle Scholar
  13. 13.
    Innerhofer P, Fries D, Margreiter J et al (2002) The effects of perioperatively administered colloids and crystalloids on primary platelet-mediated hemostasis and clot formation. Anesth Analg 95:858–865PubMedCrossRefGoogle Scholar
  14. 14.
    Kapiotis S, Quehenberger P, Eichler HG et al (1994) Effect of hydroxyethyl starch on the activity of blood coagulation and fibrinolysis in healthy volunteers: comparison with albumin. Crit Care Med 22:606–612PubMedCrossRefGoogle Scholar
  15. 15.
    Kiraly LN, Differding JA, Enomoto TM et al (2006) Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma 61:57–64 (discussion 64–55)PubMedCrossRefGoogle Scholar
  16. 16.
    Kozek-Langenecker SA (2005) Effects of hydroxyethyl starch solutions on hemostasis. Anesthesiology 103:654–660PubMedCrossRefGoogle Scholar
  17. 17.
    Levi M, Jonge E (2007) Clinical relevance of the effects of plasma expanders on coagulation. Semin Thromb Hemost 33:810–815PubMedCrossRefGoogle Scholar
  18. 18.
    Maegele M, Lefering R, Yucel N et al (2007) Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 38:298–304PubMedCrossRefGoogle Scholar
  19. 19.
    Mardel SN, Saunders FM, Allen H et al (1998) Reduced quality of clot formation with gelatin-based plasma substitutes. Br J Anaesth 80:204–207PubMedGoogle Scholar
  20. 20.
    Martini WZ (2007) The effects of hypothermia on fibrinogen metabolism and coagulation function in swine. Metabolism 56:214–221PubMedCrossRefGoogle Scholar
  21. 21.
    Martini WZ, Dubick MA, Pusateri AE et al (2006) Does bicarbonate correct coagulation function impaired by acidosis in swine? J Trauma 61:99–106PubMedCrossRefGoogle Scholar
  22. 22.
    Martini WZ, Pusateri AE, Uscilowicz JM et al (2005) Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma 58:1002–1009 (discussion 1009–1010)PubMedCrossRefGoogle Scholar
  23. 23.
    Mittermayr M, Streif W, Haas T et al (2007) Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg 105:905–917PubMedCrossRefGoogle Scholar
  24. 24.
    Niemi TT, Suojaranta-Ylinen RT, Kukkonen SI et al (2006) Gelatin and hydroxyethyl starch, but not albumin, impair hemostasis after cardiac surgery. Anesth Analg 102:998–1006PubMedCrossRefGoogle Scholar
  25. 25.
    Roche AM, James MF, Bennett-Guerrero E et al (2006) A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluids. Anesth Analg 102:1274–1279PubMedCrossRefGoogle Scholar
  26. 26.
    Ruttmann TG, James MF, Viljoen JF (1996) Haemodilution induces a hypercoagulable state. Br J Anaesth 76:412–414PubMedGoogle Scholar
  27. 27.
    Van Der Linden P, Ickx BE (2006) The effects of colloid solutions on hemostasis. Can J Anaesth 53:S 30–39Google Scholar
  28. 28.
    Waters JH, Gottlieb A, Schoenwald P et al (2001) Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 93:817–822PubMedCrossRefGoogle Scholar
  29. 29.
    Wolberg AS, Meng ZH, Monroe DM 3rd et al (2004) A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 56:1221–1228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • S. Lison
    • 1
  • P. Innerhofer
    • 2
  • M. Spannagl
    • 1
  • B. Heindl
    • 1
  1. 1.Klinik für AnaesthesiologieLudwig Maximilians Universität MünchenMünchenDeutschland
  2. 2.Klinik für Anästhesie und IntensivmedizinMedizinische Universität InnsbruckInnsbruckÖsterreich

Personalised recommendations