Notfall + Rettungsmedizin

, Volume 9, Issue 5, pp 485–500

Präklinische Volumentherapie beim Trauma

CME Weiterbildung • Zertifizierte Fortbildung

Zusammenfassung

Die präklinische Volumentherapie nach Trauma wird kontrovers diskutiert. Unstrittig ist bei Schwerverletzten das Risiko eines akuten Blutverlusts, der in eine Zentralisierung des Kreislaufs münden und unbehandelt in einen manifesten hämorrhagisch-traumatischen Schock übergehen kann. Neben der Blutstillung, die in der Kausalbehandlung höchste Priorität hat, ist die Volumentherapie der 2. Pfeiler der Kreislauftherapie. Bei manifestem oder drohendem Schock sollten 1–2 großkalibrigen Zugänge gelegt werden. Bei Patienten ohne Blutungs-/Schockzeichen ist keine Flüssigkeitsgabe notwendig. Blutverluste aus zum Stillstand gekommenen Blutungen sollten ersetzt werden. Bei präklinisch nicht stillbaren Blutungen wird neben dem schnellstmöglichen Transport in eine geeignete Klinik die permissive Hypotension favorisiert (Zielblutdruck systolisch 70–90 mmHg). Nach schwerem Schädel-Hirn-Trauma kann aktuell eine Volumentherapie empfohlen werden (mittlerer arterieller Zielblutdruck 90 mmHg). Als Volumenersatzlösung sind Kristalloide zu bevorzugen. Bei vermuteten Blutverlusten >2 l wird oft eine zusätzliche Kolloidgabe befürwortet. Der Stellenwert von kolloidalen und hyperosmolaren Kochsalz-Kolloid-Lösungen kann nicht abschließend beurteilt werden.

Schlüsselwörter

Volumentherapie Polytrauma Blutung Schock Präklinik 

Prehospital fluid resuscitation in trauma

Abstract

Fluid resuscitation of trauma patients at the scene remains highly controversial. The risk of acute blood loss following severe trauma is, however, universally accepted, as is the fact that if untreated this can culminate in centralization and even hemorrhagic-traumatic shock. The highest priority in causal treatment is to stop the bleeding, after which fluid resuscitation is performed as the second mainstay of shock therapy. In the case of manifest or impending hypovolemic shock one or two intravenous lines should be placed. Fluid resuscitation should be tailored to the individual patient’s needs: In the case of patients with no signs of bleeding or hemorrhagic shock it is not necessary to administer additional fluids. Substitution of blood losses from hemorrhages that have been stopped is needed. If bleeding cannot be stopped at the scene, many experts recommend permissive hypotension (target systolic blood pressure 70–90 mmHg) in addition to the earliest possible transfer of the patient to a suitable hospital. For patients with severe craniocerebral trauma fluid resuscitation (target mean arterial blood pressure of 90 mmHg) can be recommended. Cristalloids should be used for fluid resuscitation. If a blood loss of over 2 l is suspected administration of additional colloids is recommended. A definitive evaluation of the relative virtues of colloidal and of hyperosmolar saline-colloid solutions is not yet possible.

Keywords

Fluid resuscitation Multiple trauma Blood loss Shock Time before hospitalization 

Literatur

  1. 1.
    Adams H, Piepenbrock S, Hempelmann G (1998) Volume replacement solutions – pharmacology and clinical use. Anasthesiol Intensivmed Notfallmed Schmerzther 33: 2–17PubMedGoogle Scholar
  2. 2.
    Alpar E, Killampalli V (2004) Effects of hypertonic dextran in hypovolaemic shock: a prospective clinical trial. Injury 35: 500–506CrossRefPubMedGoogle Scholar
  3. 3.
    Balogh Z, McKinley B, Cocanour C et al. (2003) Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138: 637–642CrossRefPubMedGoogle Scholar
  4. 4.
    Banerjee A, Jones R (1994) Whither immediate fluid resuscitation? Lancet 344: 1450–1451CrossRefPubMedGoogle Scholar
  5. 5.
    Bickell WH, Wall MJ Jr, Pepe PE et al. (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331: 1105–1109CrossRefPubMedGoogle Scholar
  6. 6.
    Bourguignon PR, Shackford SR, Shiffer C et al. (1998) Delayed fluid resuscitation of head injury and uncontrolled hemorrhagic shock. Arch Surg 133: 390–398CrossRefPubMedGoogle Scholar
  7. 7.
    Bunn F, Roberts I, Tasker R, Akpa E (2004) Hypertonic versus isotonic crystalloid for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2004: CD002045Google Scholar
  8. 8.
    Chesnut RM, Marshall LF, Klauber MR et al. (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34: 216–222PubMedGoogle Scholar
  9. 9.
    Choi PT, Yip G, Quinonez LG, Cook DJ (1999) Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 27: 200–210CrossRefPubMedGoogle Scholar
  10. 10.
    Committee on Trauma (2004) Advanced trauma life support (ATLS). American College of Surgeons, ChicagoGoogle Scholar
  11. 11.
    Conte M (1997) Fluid resuscitation in the trauma patient. CRNA 8: 31–39PubMedGoogle Scholar
  12. 12.
    Cooper DJ, Myles PS, McDermott FT et al. (2004) Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury. JAMA 17: 1350–1357CrossRefGoogle Scholar
  13. 13.
    Dillon J, Lynch LJ, Myers R et al. (1966) A bioassay of treatment of hemorrhagic shock. Arch Surg 93: 537–566PubMedGoogle Scholar
  14. 14.
    Druml W (2005) Warum sind die Infusionslösungen so (schlecht) zusammengesetzt? Eine historische Perspektive. Wien Klin Wochenschr 117: 67–70CrossRefPubMedGoogle Scholar
  15. 15.
    Dutton RP, Mackenzie C, Scalea TM (2002) Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma 52: 1141–1146PubMedGoogle Scholar
  16. 16.
    Foundation AAoNSatBT (1995) Guidelines for the management of severe head injury. Brain Trauma Foundation, New YorkGoogle Scholar
  17. 17.
    Hankeln K, Lenz I, Hauser B (1988) Hemodynamic effect of 6% hydroxyethyl starch (HES 200,000/0.62). Anaesthesist 37: 167–172PubMedGoogle Scholar
  18. 18.
    Healey MA, Davis RE, Liu FC et al. (1998) Lactated Ringer’s is superior to normal saline in a model of massive hemorrhage and resuscitation. J Trauma 45: 894–899PubMedGoogle Scholar
  19. 19.
    Hedin J, Ljungstrom KG (1997) Prevention of dextran anaphylaxis. Ten years with hapten dextran. Int Arch Allergy Immunol 113: 358–359PubMedGoogle Scholar
  20. 20.
    Kaweski SM, Sise MJ, Virgilio RW (1990) The effect of prehospital fluids on survival in trauma patients. J Trauma 30: 1215–1219PubMedGoogle Scholar
  21. 21.
    Krausz M, Bashenko Y, Hirsh M (2001) Crystalloid and colloid resuscitation of uncontrolled hemorrhagic shock following massive splenic injury. Shock 16: 383–388PubMedGoogle Scholar
  22. 22.
    Kreimeier U, Prueckner S, Peter K (2000) Permissive hypotension. Schweiz Med Wochenschr 130: 1515–1524Google Scholar
  23. 23.
    Kreimeier U, Lackner C, Pruckner S et al. (2002) [Permissive hypotension in severe trauma]. Anaesthesist 51: 787–799CrossRefPubMedGoogle Scholar
  24. 24.
    Kroll W, Gassmayr S, Izmail S, List W (1997) Prehospital fluid resuscitation. Acta Anaesthesiol Scand [Suppl] 111: 301–302PubMedGoogle Scholar
  25. 25.
    Kwan I, Bunn F, Roberts I (2003) Timing and volume of fluid administration for patients with bleeding. Cochrane Database Syst Rev 2003: CD002245Google Scholar
  26. 26.
    Langeron O, Doelberg M, Ang ET et al. (2001) Voluven, a lower substituted novel hydroxyethyl starch (HES 130/0.4), causes fewer effects on coagulation in major orthopedic surgery than HES 200/0.5. Anesth Analg 92: 855–862CrossRefPubMedGoogle Scholar
  27. 27.
    Marzi I (1996) Hemorrhagic shock. Anaesthesist 45: 976–992CrossRefPubMedGoogle Scholar
  28. 28.
    Nolan J (1999) Fluid replacement. Br Med Bull 55: 821–843CrossRefPubMedGoogle Scholar
  29. 29.
    Nolan J (2001) Fluid resuscitation for the trauma patient. Resuscitation 48: 57–69CrossRefPubMedGoogle Scholar
  30. 30.
    Raum MR, Bouillon B, Eypasch E, Tiling T (1997) Technology assessment of ultrasound in acute diagnosis of blunt abdominal trauma. Langenbecks Arch Chir Suppl Kongressbd 114: 461–464PubMedGoogle Scholar
  31. 31.
    Raum M, Rixen D, Linker R et al. (2002) Influence of lactate infusion solutions on the plasma lactate concentration. Anasthesiol Intensivmed Notfallmed Schmerzther 37: 356–358CrossRefPubMedGoogle Scholar
  32. 32.
    Rhee P, Burris D, Kaufmann C et al. (1998) Lactated Ringer’s solution resuscitation causes neutrophil activation after hemorrhagic shock. J Trauma 44: 313–319PubMedGoogle Scholar
  33. 33.
    Riddez L, Johnson L, Hahn R (1998) Central and regional hemodynamics during crystalloid fluid therapy after uncontrolled intra-abdominal bleeding. J Trauma 44: 433–439PubMedGoogle Scholar
  34. 34.
    Ring J, Messmer K (1977) Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet 26: 466–469CrossRefGoogle Scholar
  35. 35.
    Roberts I, Alderson P, Bunn F et al. (2004) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2004: CD000567Google Scholar
  36. 36.
    Sampalis J, Tamim H, Denis R (1997) Ineffectiveness of on-site intravenous lines: is prehospital time the culprit? J Trauma 43: 608–615PubMedGoogle Scholar
  37. 37.
    Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ 316: 961–964PubMedGoogle Scholar
  38. 38.
    Shafi S, Gentilello L (2005) Hypotension does not increase mortality in brain-injured patients more than it does in non-brain-injured patients. J Trauma 59: 830–834PubMedGoogle Scholar
  39. 39.
    Shah N, Palmer C, Sharma P (1998) Outcome of raising blood pressure in patients with penetrating trunk wounds. Lancet 351: 648–649CrossRefGoogle Scholar
  40. 40.
    Shires G, Holman J (1948) Dilutional acidosis. Ann Intern Med 28: 557–559Google Scholar
  41. 41.
    Shires T, Coln D, Carrico CJ (1964) Fluid therapy in hemorrhagic shock. Arch Surg 88: 688PubMedGoogle Scholar
  42. 42.
    Turner J, Nicholl J, Webber L et al. (2000) A randomised controlled trial of prehospital intravenous fluid replacement therapy in serious trauma. Health Technol Assess 4: 1–57Google Scholar
  43. 43.
    Velanovich V (1989) Crystalloid versus colloid fluid resuscitation: a meta-analysis of mortality. Surgery 105: 65–71PubMedGoogle Scholar
  44. 44.
    Wade C, Grady J, Kramer G (2003) Efficacy of hypertonic saline dextran fluid resuscitation for patients with hypotension from penetrating trauma. J Trauma 54: 144–148Google Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Klinik für TraumatologieUniversitair Medisch Centrum GroningenGroningenNiederlande
  2. 2.Klinik für UnfallchirurgieUniversitätsklinikum EssenEssen
  3. 3.s. Infobox am Ende des Beitrags

Personalised recommendations