Advertisement

neurogenetics

, Volume 19, Issue 3, pp 135–144 | Cite as

Toward deciphering the mechanistic role of variations in the Rep1 repeat site in the transcription regulation of SNCA gene

  • A. Afek
  • L. Tagliafierro
  • O.C. Glenn
  • D.B. Lukatsky
  • R. Gordan
  • O. Chiba-Falek
Original Article
  • 120 Downloads

Abstract

Short structural variants—variants other than single nucleotide polymorphisms—are hypothesized to contribute to many complex diseases, possibly by modulating gene expression. However, the molecular mechanisms by which noncoding short structural variants exert their effects on gene regulation have not been discovered. Here, we study simple sequence repeats (SSRs), a common class of short structural variants. Previously, we showed that repetitive sequences can directly influence the binding of transcription factors to their proximate recognition sites, a mechanism we termed non-consensus binding. In this study, we focus on the SSR termed Rep1, which was associated with Parkinson’s disease (PD) and has been implicated in the cis-regulation of the PD-risk SNCA gene. We show that Rep1 acts via the non-consensus binding mechanism to affect the binding of transcription factors from the GATA and ELK families to their specific sites located right next to the Rep1 repeat. Next, we performed an expression analysis to further our understanding regarding the GATA and ELK family members that are potentially relevant for SNCA transcriptional regulation in health and disease. Our analysis indicates a potential role for GATA2, consistent with previous reports. Our study proposes non-consensus transcription factor binding as a potential mechanism through which noncoding repeat variants could exert their pathogenic effects by regulating gene expression.

Keywords

GATA SNCA Simple sequence repeat (SSR) variants Parkinson’s disease Transcription factors 

Notes

Acknowledgements

We thank the Layton Aging and Alzheimer’s Disease Center at Oregon Health and Science University for providing us with the brain tissues, and Dr. Randy Woltjer for his assistance in obtaining the required brain samples for the study.

Funding

This work was funded in part by the Holland-Trice award (to O.C-F. and R.G.), the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) (R01 NS085011 to O.C-F.), and the National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS) (R01 GM117106 to R.G.).

Compliance with ethical standards

The projects were approved by the Duke Institutional Review Board and followed appropriate ethical protocols, and all experiments were performed in accordance with relevant guidelines and regulations.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10048_2018_546_MOESM1_ESM.pdf (514 kb)
ESM 1 (PDF 513 kb)

References

  1. 1.
    Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447:932–940CrossRefPubMedGoogle Scholar
  2. 2.
    Pearson CE, Nichol Edamura K, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742CrossRefPubMedGoogle Scholar
  3. 3.
    Willems T, Gymrek M, Highnam G, Genomes Project C, Mittelman D, Erlich Y (2014) The landscape of human STR variation. Genome Res 24:1894–1904CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gymrek M, Willems T, Guilmatre A, Zeng H, Markus B, Georgiev S et al (2016) Abundant contribution of short tandem repeats to gene expression variation in humans. Nat Genet 48:22–29CrossRefPubMedGoogle Scholar
  5. 5.
    Akai J, Kimura A, Hata RI (1999) Transcriptional regulation of the human type I collagen alpha2 (COL1A2) gene by the combination of two dinucleotide repeats. Gene 239:65–73CrossRefPubMedGoogle Scholar
  6. 6.
    Chiba-Falek O, Nussbaum RL (2001) Effect of allelic variation at the NACP-Rep1 repeat upstream of the alpha-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Hum Mol Genet 10:3101–3109CrossRefPubMedGoogle Scholar
  7. 7.
    Okladnova O, Syagailo YV, Tranitz M, Stober G, Riederer P, Mossner R et al (1998) A promoter-associated polymorphic repeat modulates PAX-6 expression in human brain. Biochem Biophys Res Commun 248:402–405CrossRefPubMedGoogle Scholar
  8. 8.
    Peters DG, Kassam A, St Jean PL, Yonas H, Ferrell RE (1999) Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke 30:2612–2616CrossRefPubMedGoogle Scholar
  9. 9.
    Searle S, Blackwell JM (1999) Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet 36:295–299PubMedPubMedCentralGoogle Scholar
  10. 10.
    Shimajiri S, Arima N, Tanimoto A, Murata Y, Hamada T, Wang KY et al (1999) Shortened microsatellite d(CA)21 sequence down-regulates promoter activity of matrix metalloproteinase 9 gene. FEBS Lett 455:70–74CrossRefPubMedGoogle Scholar
  11. 11.
    Hefferon TW, Groman JD, Yurk CE, Cutting GR (2004) A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci U S A 101:3504–3509CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Kruger R et al (2006) Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 296:661–670CrossRefPubMedGoogle Scholar
  13. 13.
    Xia Y, Rohan de Silva HA, Rosi BL, Yamaoka LH, Rimmler JB, Pericak-Vance MA et al (1996) Genetic studies in Alzheimer’s disease with an NACP/alpha-synuclein polymorphism. Ann Neurol 40:207–215CrossRefPubMedGoogle Scholar
  14. 14.
    Touchman JW, Dehejia A, Chiba-Falek O, Cabin DE, Schwartz JR, Orrison BM et al (2001) Human and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res 11:78–86CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Goldman SM, Umbach DM, Kamel F, Tanner CM (2015) Head injury, alpha-synuclein Rep1 and Parkinson’s disease: a meta-analytic view of gene-environment interaction. Eur J Neurol 22:e75CrossRefPubMedGoogle Scholar
  16. 16.
    Kay DM, Factor SA, Samii A, Higgins DS, Griffith A, Roberts JW et al (2008) Genetic association between alpha-synuclein and idiopathic Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 147B:1222–1230CrossRefPubMedGoogle Scholar
  17. 17.
    Farrer M, Maraganore DM, Lockhart P, Singleton A, Lesnick TG, de Andrade M et al (2001) alpha-Synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 10:1847–1851CrossRefPubMedGoogle Scholar
  18. 18.
    Mizuta I, Nishimura M, Mizuta E, Yamasaki S, Ohta M, Kuno S (2002) Meta-analysis of alpha synuclein/ NACP polymorphism in Parkinson’s disease in Japan. J Neurol Neurosurg Psychiatry 73:350CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mellick GD, Maraganore DM, Silburn PA (2005) Australian data and meta-analysis lend support for alpha-synuclein (NACP-Rep1) as a risk factor for Parkinson’s disease. Neurosci Lett 375:112–116CrossRefPubMedGoogle Scholar
  20. 20.
    Linnertz C, Saucier L, Ge D, Cronin KD, Burke JR, Browndyke JN et al (2009) Genetic regulation of alpha-synuclein mRNA expression in various human brain tissues. PLoS One 4:e7480CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chiba-Falek O, Touchman JW, Nussbaum RL (2003) Functional analysis of intra-allelic variation at NACP-Rep1 in the alpha-synuclein gene. Hum Genet 113:426–431CrossRefPubMedGoogle Scholar
  22. 22.
    Cronin KD, Ge D, Manninger P, Linnertz C, Rossoshek A, Orrison BM et al (2009) Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human alpha-synuclein in transgenic mouse brain. Hum Mol Genet 18:3274–3285CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Saul R, Lutz MW, Burns DK, Roses AD, Chiba-Falek O (2016) The SSV evaluation system: a tool to prioritize short structural variants for studies of possible regulatory and causal variants. Hum Mutat 37:877–883CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Afek A, Cohen H, Barber-Zucker S, Gordan R, Lukatsky DB (2015) Nonconsensus protein binding to repetitive DNA sequence elements significantly affects eukaryotic genomes. PLoS Comput Biol 11:e1004429CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Afek A, Schipper JL, Horton J, Gordan R, Lukatsky DB (2014) Protein-DNA binding in the absence of specific base-pair recognition. Proc Natl Acad Sci U S A 111:17140–17145CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW 3rd, Bulyk ML (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24:1429–1435CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hume MA, Barrera LA, Gisselbrecht SS, Bulyk ML (2015) UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 43:D117–D122CrossRefPubMedGoogle Scholar
  28. 28.
    Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P et al (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158:1431–1443CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29:2147–2160CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nardelli J, Thiesson D, Fujiwara Y, Tsai FY, Orkin SH (1999) Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev Biol 210:305–321CrossRefPubMedGoogle Scholar
  31. 31.
    Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC et al (2008) GATA transcription factors directly regulate the Parkinson’s disease-linked gene alpha-synuclein. Proc Natl Acad Sci U S A 105:10907–10912CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Brenner S, Wersinger C, Gasser T (2015) Transcriptional regulation of the alpha-synuclein gene in human brain tissue. Neurosci Lett 599:140–145CrossRefPubMedGoogle Scholar
  33. 33.
    Berger MF, Bulyk ML (2009) Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4:393–411CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Barrera LA, Vedenko A, Kurland JV, Rogers JM, Gisselbrecht SS, Rossin EJ et al (2016) Survey of variation in human transcription factors reveals prevalent DNA binding changes. Science 351:1450–1454CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gordan R, Hartemink AJ, Bulyk ML (2009) Distinguishing direct versus indirect transcription factor-DNA interactions. Genome Res 19:2090–2100CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chiba-Falek O, Lopez GJ, Nussbaum RL (2006) Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. Mov Disord 21:1703–1708CrossRefPubMedGoogle Scholar
  37. 37.
    Linnertz C, Anderson L, Gottschalk W, Crenshaw D, Lutz MW, Allen J et al (2014) The cis-regulatory effect of an Alzheimer’s disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes. Alzheimer's Dementia : J Alzheimer's Assoc 10:541–551CrossRefGoogle Scholar
  38. 38.
    Linnertz C, Lutz MW, Ervin JF, Allen J, Miller NR, Welsh-Bohmer KA et al (2014) The genetic contributions of SNCA and LRRK2 genes to Lewy body pathology in Alzheimer’s disease. Hum Mol Genet 23:4814–4821CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841CrossRefPubMedGoogle Scholar
  40. 40.
    Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M et al (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55:174–179CrossRefPubMedGoogle Scholar
  41. 41.
    Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, Cookson MR et al (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:1835–1838CrossRefPubMedGoogle Scholar
  42. 42.
    Grundemann J, Schlaudraff F, Haeckel O, Liss B (2008) Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease. Nucleic Acids Res 36:e38CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rockenstein E, Hansen LA, Mallory M, Trojanowski JQ, Galasko D, Masliah E (2001) Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Res 914:48–56CrossRefPubMedGoogle Scholar
  44. 44.
    Asi YT, Simpson JE, Heath PR, Wharton SB, Lees AJ, Revesz T et al (2014) Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia 62:964–970CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lutz MW, Saul R, Linnertz C, Glenn OC, Roses AD, Chiba-Falek O (2015) A cytosine-thymine (CT)-rich haplotype in intron 4 of SNCA confers risk for Lewy body pathology in Alzheimer’s disease and affects SNCA expression. Alzheimer's Dementia : J Alzheimer's Assoc. 11:1133–1143CrossRefGoogle Scholar
  46. 46.
    Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI et al (2016) Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature 533:95–99CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tagliafierro L, Glenn OC, Zamora ME, Beach TG, Woltjer RL, Lutz MW et al (2017) Genetic analysis of alpha-synuclein 3′ untranslated region and its corresponding microRNAs in relation to Parkinson's compared to dementia with Lewy bodies. Alzheimers DementGoogle Scholar
  48. 48.
    Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F, Canella D et al (2014) Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24:1157–1168CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lutz MW, Saul R, Linnertz C, Glenn OC, Roses AD, Chiba-Falek O. A cytosine-thymine (CT)-rich haplotype in intron 4 of SNCA confers risk for Lewy body pathology in Alzheimer's disease and affects SNCA expression. Alzheimer's Dementia :J Alzheimer’s Assoc. 2015Google Scholar
  50. 50.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods (San Diego, Calif) 25:402–408CrossRefGoogle Scholar
  51. 51.
    Gordan R, Shen N, Dror I, Zhou T, Horton J, Rohs R et al (2013) Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep 3:1093–1104CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mordelet F, Horton J, Hartemink AJ, Engelhardt BE, Gordan R (2013) Stability selection for regression-based models of transcription factor-DNA binding specificity. Bioinformatics 29:i117–i125CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biostatistics and BioinformaticsDuke University Medical CenterDurhamUSA
  2. 2.Center for Genomic and Computational BiologyDuke University Medical CenterDurhamUSA
  3. 3.Department of NeurologyDuke University Medical CenterDurhamUSA
  4. 4.Department of ChemistryBen-Gurion University of the NegevBeershebaIsrael
  5. 5.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations