Advertisement

neurogenetics

, Volume 19, Issue 1, pp 41–47 | Cite as

Monogenic disorders that mimic the phenotype of Rett syndrome

  • Siddharth Srivastava
  • Sonal Desai
  • Julie Cohen
  • Constance Smith-Hicks
  • Kristin Barañano
  • Ali Fatemi
  • SakkuBai NaiduEmail author
Original Article

Abstract

Rett syndrome (RTT) is caused by mutations in methyl-CpG-binding protein 2 (MECP2), but defects in a handful of other genes (e.g., CDKL5, FOXG1, MEF2C) can lead to presentations that resemble, but do not completely mirror, classical RTT. In this study, we attempted to identify other monogenic disorders that share features with RTT. We performed a retrospective chart review on n = 319 patients who had undergone clinical whole exome sequencing (WES) for further etiological evaluation of neurodevelopmental diagnoses that remained unexplained despite extensive prior workup. From this group, we characterized those who (1) possessed features that were compatible with RTT based on clinical judgment, (2) subsequently underwent MECP2 sequencing and/or MECP2 deletion/duplication analysis with negative results, and (3) ultimately arrived at a diagnosis other than RTT with WES. n = 7 patients had clinical features overlapping RTT with negative MECP2 analysis but positive WES providing a diagnosis. These seven patients collectively possessed pathogenic variants in six different genes: two in KCNB1 and one each in FOXG1, IQSEC2, MEIS2, TCF4, and WDR45. n = 2 (both with KCNB1 variants) fulfilled criteria for atypical RTT. RTT-associated features included the following: loss of hand or language skills (n = 3; IQSEC2, KCNB1 x 2); disrupted sleep (n = 4; KNCB1, MEIS2, TCF4, WDR45); stereotyped hand movements (n = 5; FOXG1, KNCB1 x 2, MEIS2, TCF4); bruxism (n = 3; KCNB1 x 2; TCF4); and hypotonia (n = 7). Clinically based diagnoses can be misleading, evident by the increasing number of genetic conditions associated with features of RTT with negative MECP2 mutations.

Keywords

Rett syndrome Mendelian disorders Mimics 

Notes

Acknowledgements

We would like to thank the families for their participation.

Funding information

Dr. Srivastava is supported by an NIH grant, 4T32GM007748-38.

Compliance with ethical standards

The Institution Review Board of the Johns Hopkins University School of Medicine approved this study under an IRB exemption protocol (IRB00098913).

Conflicts of interest

JC is a paid consultant for Invitae, and AF is a paid consultant for Ambry Genetics and Aevi Genomic Medicine.

References

  1. 1.
    Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14(4):471–479.  https://doi.org/10.1002/ana.410140412 CrossRefPubMedGoogle Scholar
  2. 2.
    Christodoulou J, Ho G (1993) MECP2-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, Bird TD, Fong C-T, Mefford HC, Smith RJ, Stephens K (eds) GeneReviews(®). Seattle (WA): University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1497/ (Accessed 23 Mar 2016)
  3. 3.
    Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey MES, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK, RettSearch Consortium (2010) Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 68(6):944–950.  https://doi.org/10.1002/ana.22124 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A, Glaze DG (2008) Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70(16):1313–1321.  https://doi.org/10.1212/01.wnl.0000291011.54508.aa CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nguyen MVC, Du F, Felice CA, Shan X, Nigam A, Mandel G, Robinson JK, Ballas N (2012) MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J Neurosci 32(29):10021–10034.  https://doi.org/10.1523/JNEUROSCI.1316-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gold WA, Christodoulou J (2015) The utility of next-generation sequencing in gene discovery for mutation-negative patients with Rett syndrome. Front Cell Neurosci 9.  https://doi.org/10.3389/fncel.2015.00266
  7. 7.
    Lucariello M, Vidal E, Vidal S, Saez M, Roa L, Huertas D, Pineda M, Dalfó E, Dopazo J, Jurado P, Armstrong J, Esteller M (2016) Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype. Hum Genet 135(12):1343–1354.  https://doi.org/10.1007/s00439-016-1721-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lopes F, Barbosa M, Ameur A, Soares G, de Sá J, Dias AI, Oliveira G, Cabral P, Temudo T, Calado E, Cruz IF, Vieira JP, Oliveira R, Esteves S, Sauer S, Jonasson I, Syvänen A-C, Gyllensten U, Pinto D, Maciel P (2016) Identification of novel genetic causes of Rett syndrome-like phenotypes. J Med Genet Published Online First: 6 January 53(3):190–199.  https://doi.org/10.1136/jmedgenet-2015-103568 CrossRefPubMedGoogle Scholar
  9. 9.
    Srivastava S, Cohen JS, Vernon H, Barañano K, McClellan R, Jamal L, Naidu S, Fatemi A (2014) Clinical whole exome sequencing in child neurology practice. Ann Neurol 76(4):473–483.  https://doi.org/10.1002/ana.24251 CrossRefPubMedGoogle Scholar
  10. 10.
    Sajan SA, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Glaze DG, Kaufmann WE, Skinner SA, Anese F, Friez MJ, Jane L, Percy AK, Neul JL (2017) Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2. Genet Med 19(1):13–19.  https://doi.org/10.1038/gim.2016.42 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee JS, Yoo Y, Lim BC, Kim KJ, Choi M, Chae J-H (2016) SATB2-associated syndrome presenting with Rett-like phenotypes. Clin Genet 89(6):728–732.  https://doi.org/10.1111/cge.12698 CrossRefPubMedGoogle Scholar
  12. 12.
    Lee JS, Yoo Y, Lim BC, Kim KJ, Song J, Choi M, Chae J-H (2016) GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: masquerading as Rett syndrome-like phenotype. Am J Med Genet A 170(8):2200–2205.  https://doi.org/10.1002/ajmg.a.37773 CrossRefPubMedGoogle Scholar
  13. 13.
    Saitsu H, Tohyama J, Walsh T, Kato M, Kobayashi Y, Lee M, Tsurusaki Y, Miyake N, Goto Y-I, Nishino I, Ohtake A, King M-C, Matsumoto N (2014) A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. J Hum Genet 59(10):581–583.  https://doi.org/10.1038/jhg.2014.71 CrossRefPubMedGoogle Scholar
  14. 14.
    Lehmann OJ, Sowden JC, Carlsson P, Jordan T, Bhattacharya SS (2003) Fox’s in development and disease. Trends Genet 19(6):339–344.  https://doi.org/10.1016/S0168-9525(03)00111-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Florian C, Bahi-Buisson N, Bienvenu T (2012) FOXG1-related disorders: from clinical description to molecular genetics. Mol Syndromol 2(3-5):153–163PubMedGoogle Scholar
  16. 16.
    Kortüm F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, Horn D, Klopocki E, Kluger G, Martin P, Rauch A, Roumer A, Saitta S, Walsh LE, Wieczorek D, Uyanik G, Kutsche K, Dobyns WB (2011) The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 48(6):396–406.  https://doi.org/10.1136/jmg.2010.087528 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A (2008) FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 83(1):89–93.  https://doi.org/10.1016/j.ajhg.2008.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Van der Aa N, Van den Bergh M, Ponomarenko N, Verstraete L, Ceulemans B, Storm K (2011) Analysis of FOXG1 is highly recommended in male and female patients with Rett syndrome. Mol Syndromol 1(6):290–293.  https://doi.org/10.1159/000330755 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Olson HE, Tambunan D, LaCoursiere C, Goldenberg M, Pinsky R, Martin E, Ho E, Khwaja O, Kaufmann WE, Poduri A (2015) Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome. Am J Med Genet A 167A(9):2017–2025.  https://doi.org/10.1002/ajmg.a.37132 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Allou L, Julia S, Amsallem D, El Chehadeh S, Lambert L, Thevenon J, Duffourd Y, Saunier A, Bouquet P, Pere S, Moustaïne A, Ruaud L, Roth V, Jonveaux P, Philippe C (2016) Rett-like phenotypes: expanding the genetic heterogeneity to the KCNA2 gene and first familial case of CDKL5-related disease. Clin Genet Published Online First: 7 April 91(3):431–440.  https://doi.org/10.1111/cge.12784 CrossRefPubMedGoogle Scholar
  21. 21.
    Torkamani A, Bersell K, Jorge BS, Bjork RL, Friedman JR, Bloss CS, Cohen J, Gupta S, Naidu S, Vanoye CG, George AL, Kearney JA (2014) De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol 76(4):529–540.  https://doi.org/10.1002/ana.24263 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thiffault I, Speca DJ, Austin DC, Cobb MM, Eum KS, Safina NP, Grote L, Farrow EG, Miller N, Soden S, Kingsmore SF, Trimmer JS, Saunders CJ, Sack JT (2015) A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. J Gen Physiol 146(5):399–410.  https://doi.org/10.1085/jgp.201511444 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Saitsu H, Akita T, Tohyama J, Goldberg-Stern H, Kobayashi Y, Cohen R, Kato M, Ohba C, Miyatake S, Tsurusaki Y, Nakashima M, Miyake N, Fukuda A, Matsumoto N (2015) De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing. Sci Rep 5(1):15199.  https://doi.org/10.1038/srep15199 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Allen NM, Conroy J, Shahwan A, Lynch B, Correa RG, Pena SDJ, McCreary D, Magalhães TR, Ennis S, Lynch SA, King MD (2016) Unexplained early onset epileptic encephalopathy: exome screening and phenotype expansion. Epilepsia 57(1):e12–e17.  https://doi.org/10.1111/epi.13250 CrossRefPubMedGoogle Scholar
  25. 25.
    Latypova X, Matsumoto N, Vinceslas-Muller C, Bézieau S, Isidor B, Miyake N (2016) Novel KCNB1 mutation associated with non-syndromic intellectual disability. J Hum Genet Published Online First: 8 December 62(5):569–573.  https://doi.org/10.1038/jhg.2016.154 CrossRefPubMedGoogle Scholar
  26. 26.
    Johansson S, Berland S, Gradek GA, Bongers E, de Leeuw N, Pfundt R, Fannemel M, Rødningen O, Brendehaug A, Haukanes BI, Hovland R, Helland G, Houge G (2014) Haploinsufficiency of MEIS2 is associated with orofacial clefting and learning disability. Am J Med Genet A 164A(7):1622–1626.  https://doi.org/10.1002/ajmg.a.36498 CrossRefPubMedGoogle Scholar
  27. 27.
    Louw JJ, Corveleyn A, Jia Y, Hens G, Gewillig M, Devriendt K (2015) MEIS2 involvement in cardiac development, cleft palate, and intellectual disability. Am J Med Genet 167(5):1142–1146.  https://doi.org/10.1002/ajmg.a.36989 CrossRefGoogle Scholar
  28. 28.
    Fujita A, Isidor B, Piloquet H, Corre P, Okamoto N, Nakashima M, Tsurusaki Y, Saitsu H, Miyake N, Matsumoto N (2016) De novo MEIS2 mutation causes syndromic developmental delay with persistent gastro-esophageal reflux. J Hum Genet 61(9):835–838.  https://doi.org/10.1038/jhg.2016.54 CrossRefPubMedGoogle Scholar
  29. 29.
    Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, Plouin P, Carter NP, Lyonnet S, Munnich A, Colleaux L (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80(5):988–993.  https://doi.org/10.1086/515582 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Van Balkom IDC, Vuijk PJ, Franssens M, Hoek HW, Hennekam RCM (2012) Development, cognition, and behaviour in Pitt-Hopkins syndrome. Dev Med Child Neurol 54(10):925–931.  https://doi.org/10.1111/j.1469-8749.2012.04339.x CrossRefPubMedGoogle Scholar
  31. 31.
    Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, Anderson J, Boddaert N, Sanford L, Harik SI, Dandu VH, Nardocci N, Zorzi G, Dunaway T, Tarnopolsky M, Skinner S, Holden KR, Frucht S, Hanspal E, Schrander-Stumpel C, Mignot C, Héron D, Saunders DE, Kaminska M, Lin J-P, Lascelles K, Cuno SM, Meyer E, Garavaglia B, Bhatia K, de Silva R, Crisp S, Lunt P, Carey M, Hardy J, Meitinger T, Prokisch H, Hogarth P (2013) β-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain 136(6):1708–1717.  https://doi.org/10.1093/brain/awt095 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Okamoto N, Ikeda T, Hasegawa T, Yamamoto Y, Kawato K, Komoto T, Imoto I (2014) Early manifestations of BPAN in a pediatric patient. Am J Med Genet A 164A(12):3095–3099.  https://doi.org/10.1002/ajmg.a.36779 CrossRefPubMedGoogle Scholar
  33. 33.
    Ohba C, Nabatame S, Iijima Y, Nishiyama K, Tsurusaki Y, Nakashima M, Miyake N, Tanaka F, Ozono K, Saitsu H, Matsumoto N (2014) De novo WDR45 mutation in a patient showing clinically Rett syndrome with childhood iron deposition in brain. J Hum Genet 59(5):292–295.  https://doi.org/10.1038/jhg.2014.18 CrossRefPubMedGoogle Scholar
  34. 34.
    Naidu S, Johnston MV (2011) Neurodevelopmental disorders: clinical criteria for Rett syndrome. Nat Rev Neurol 7(6):312–314.  https://doi.org/10.1038/nrneurol.2011.64 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyBoston Children’s HospitalBostonUSA
  2. 2.Hugo W. Moser Research Institute at Kennedy Krieger InstituteBaltimoreUSA
  3. 3.Department of NeurologyThe Johns Hopkins HospitalBaltimoreUSA
  4. 4.Department of PediatricsThe Johns Hopkins HospitalBaltimoreUSA

Personalised recommendations