, Volume 16, Issue 4, pp 287–298 | Cite as

A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations

  • Carlos Córdova-FletesEmail author
  • Ma. Guadalupe Domínguez
  • Ilse Delint-Ramirez
  • Herminia G. Martínez-Rodríguez
  • Ana María Rivas-Estilla
  • Patricio Barros-Núñez
  • Rocío Ortiz-López
  • Vivian Alejandra Neira
Original Article


We report a girl with intellectual disability (ID), neuropsychiatric alterations, and a de novo balanced t(10;19)(q22.3;q13.33) translocation. After chromosome sorting, fine mapping of breakpoints by array painting disclosed disruptions of the zinc finger, MIZ-type containing 1 (ZMIZ1) (on chr10) and proline-rich 12 (PRR12) (on chr19) genes. cDNA analyses revealed that the translocation resulted in gene fusions. The resulting hybrid transcripts predict mRNA decay or, if translated, formation of truncated proteins, both due to frameshifts that introduced premature stop codons. Though other molecular mechanisms may be operating, these results suggest that haploinsufficiency of one or both genes accounts for the patient’s phenotype. ZMIZ1 is highly expressed in the brain, and its protein product appears to interact with neuron-specific chromatin remodeling complex (nBAF) and activator protein 1 (AP-1) complexes which play a role regulating the activity of genes essential for normal synapse and dendrite growth/behavior. Strikingly, the patient’s phenotype overlaps with phenotypes caused by mutations in SMARCA4 (BRG1), an nBAF subunit presumably interacting with ZMIZ1 in brain cells as suggested by our results of coimmunoprecipitation in the mouse brain. PRR12 is also expressed in the brain, and its protein product possesses domains and residues thought to be related in formation of large protein complexes and chromatin remodeling. Our observation from E15 mouse brain cells that a Prr12 isoform was confined to nucleus suggests a role as a transcription nuclear cofactor likely involved in neuronal development. Moreover, a pilot transcriptome analysis from t(10;19) lymphoblastoid cell line suggests dysregulation of genes linked to neurodevelopment processes/neuronal communication (e.g., NRCAM) most likely induced by altered PRR12. This case represents the first constitutional balanced translocation disrupting and fusing both genes and provides clues for the potential function and effects of these in the central nervous system.


Balanced translocation Gene disruption Fusion transcripts Chromatin remodeling factors Neuropsychiatric disorders 



We thank to the patient’s parents for their continuous cooperation. We thank to Dr. V. Kalscheuer and Dr. U. Reinhard for their important work to help us to refine the translocation breakpoints and set up the LCLs. This work was supported by PROMEP (No. 103.5/11/4330), PAICYT (No. CS-927-11), and CONACYT (No. INFRA-2013-204423) for C Córdova-Fletes. I. Delint-Ramírez was supported by CONACYT (No. 180919). We also thank Dr. H. Rivera for his support to review this manuscript, and B. Verduzco-Garza, E.N. Garza-Treviño, and A. Camacho for their technical support/suggestions.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10048_2015_452_MOESM1_ESM.xls (120 kb)
ESM 1 (XLS 119 kb)


  1. 1.
    Bugge M, Bruun-Petersen G, Brøndum-Nielsen K et al (2000) Disease associated balanced chromosome rearrangements: a resource for large scale genotype-phenotype delineation in man. J Med Genet 37:858–865PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Yue Y, Grossmann B, Holder SE, Haaf T (2005) De novo t(7;10)(q33;q23) translocation and closely juxtaposed microdeletion in a patient with macrocephaly and developmental delay. Hum Genet 117:1–8CrossRefPubMedGoogle Scholar
  3. 3.
    De Gregori M, Ciccone R, Magini P et al (2007) Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet 44:750–762PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Stankiewicz P, Beaudet A (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17:182–192CrossRefPubMedGoogle Scholar
  5. 5.
    Borsani G, Piovani G, Zoppi N et al (2008) Cytogenetic and molecular characterization of a de-novo t(2p;7p) translocation involving TNS3 and EXOC6B genes in a boy with a complex syndromic phenotype. Eur J Med Genet 51:292–302CrossRefPubMedGoogle Scholar
  6. 6.
    Schluth-Bolard C, Delobel B, Sanlaville D et al (2009) Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases. Eur J Med Genet 52:291–296CrossRefPubMedGoogle Scholar
  7. 7.
    Vandeweyer G, Kooy RF (2009) Balanced translocations in mental retardation. Hum Genet 126:133–147CrossRefPubMedGoogle Scholar
  8. 8.
    Backx L, Seuntjens E, Devriendt K et al (2011) A balanced translocation t(6;14)(q25.3;q13.2) leading to reciprocal fusion transcripts in a patient with intellectual disability and agenesis of corpus callosum. Cytogenet Genome Res 132:135–143CrossRefPubMedGoogle Scholar
  9. 9.
    Ropers HH (2007) New perspectives for the elucidation of genetic disorders. Am J Hum Genet 81:199–207PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Laumonnier F, Cuthbert PC, Grant SG (2007) The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 80:205–220PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Tsurusaki Y, Okamoto N, Ohashi H et al (2012) Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet 44:376–378CrossRefPubMedGoogle Scholar
  12. 12.
    Kim HG, Kim HT, Leach NT et al (2012) Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. Am J Hum Genet 91:56–72PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Fiegler H, Gribble SM, Burford DC et al (2003) Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J Med Genet 40:664–670PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Veltman IM, Veltman JA, Arkesteijn G et al (2003) Chromosomal breakpoint mapping by arrayCGH using flow-sorted chromosomes. Biotechniques 35:1066–1070PubMedGoogle Scholar
  15. 15.
    Arkesteijn G, Jumelet E, Hagenbeek A et al (1999) Reverse chromosome painting for the identification of marker chromosomes and complex translocations in leukemia. Cytometry 35:117–124CrossRefPubMedGoogle Scholar
  16. 16.
    Chen W, Erdogan F, Ropers HH et al (2005) CGHPRO—a comprehensive data analysis tool for array CGH. BMC Bioinforma 6:85CrossRefGoogle Scholar
  17. 17.
    Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86:831–845CrossRefPubMedGoogle Scholar
  18. 18.
    Lovtrup-Rein H, McEwen BS (1966) Isolation and fractionation of rat brain nuclei. J Cell Biol 30:405–415PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Delint-Ramírez I, Salcedo-Tello P, Bermudez-Rattoni F (2008) Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. J Neurochem 106:1658–1668CrossRefPubMedGoogle Scholar
  20. 20.
    Bolotin E, Armendariz A, Kim K et al (2014) Statin-induced changes in gene expression in EBV-transformed and native B-cells. Hum Mol Genet 23:1202–1210PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Jensen P, Magdaleno S, Lehman KM et al (2004) Aneurogenomics approach to gene expression analysis in the developing brain. Brain Res Mol Brain Res 132:116–127CrossRefPubMedGoogle Scholar
  22. 22.
    Sharma M, Li X, Wang Y et al (2003) hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J 22:6101–6114PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Beliakoff J, Lee J, Ueno H et al (2008) The PIAS-like protein Zimp10 is essential for embryonic viability and proper vascular development. Mol Cell Biol 28:282–292PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Henderson P, van Limbergen JE, Wilson DC et al (2011) Genetics of childhood-onset inflammatory bowel disease. Inflamm Bowel Dis 17:346–361CrossRefPubMedGoogle Scholar
  25. 25.
    Rodriguez-Magadán H, Merino E, Schnabel D et al (2008) Spatial and temporal expression of Zimp7 and Zimp10 PIAS-like proteins in the developing mouse embryo. Gene Expr Patterns 8:206–213CrossRefPubMedGoogle Scholar
  26. 26.
    Nagase T, Ishikawa K, Kikuno R et al (1999) Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6:337–345CrossRefPubMedGoogle Scholar
  27. 27.
    Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell 146:247–261PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Li X, Zhu C, Tu WH et al (2011) ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract. PLoS One 6, e25040PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Wu JI, Lessard J, Olave IA et al (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108CrossRefPubMedGoogle Scholar
  30. 30.
    Gass P, Fleischmann A, Hvalby O et al (2004) Mice with a fra-1 knock-in into the c-fos locus show impaired spatial but regular contextual learning and normal LTP. Brain Res Mol Brain Res 130:16–22CrossRefPubMedGoogle Scholar
  31. 31.
    Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145CrossRefPubMedGoogle Scholar
  32. 32.
    Pérez-Cadahía B, Drobic B, Davie JR (2011) Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 89:61–73CrossRefPubMedGoogle Scholar
  33. 33.
    Vonhoff F, Kuehn C, Blumenstock S et al (2013) Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development. Development 140:606–616PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Ferreira MA, O'Donovan MC, Meng YA et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Disanto G, Sandve GK, Berlanga-Taylor AJ et al (2012) Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Hum Mol Genet 21:3575–3586PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Amunts K, Kedo O, Kindler M et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352CrossRefGoogle Scholar
  37. 37.
    Hussain R, Ghoumari AM, Bielecki B et al (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136:132–146CrossRefPubMedGoogle Scholar
  38. 38.
    Cunningham RL, Lumia AR, McGinnis MY (2012) Androgen receptors, sex behavior, and aggression. Neuroendocrinology 96:131–140PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Kosho T, Okamoto N, Ohashi H et al (2013) Clinical Correlations of Mutations Affecting Six Components of the SWI/SNF Complex: Detailed Description of 21 Patients and a Review of the Literature. Am J Med Genet A 161A:1221–1237CrossRefPubMedGoogle Scholar
  40. 40.
    Rigbolt KT, Prokhorova TA, Akimov V et al (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4(164):rs3CrossRefPubMedGoogle Scholar
  41. 41.
    Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26:4413–4421PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840CrossRefPubMedGoogle Scholar
  43. 43.
    Baker SA, Chen L, Wilkins AD et al (2013) An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152:984–996PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Murata Y, Doi T, Taniguchi H, Fujiyoshi Y (2005) Proteomic analysis revealed a novel synaptic proline-rich membrane protein (PRR7) associated with PSD-95 and NMDA receptor. Biochem Biophys Res Commun 327:183–191CrossRefPubMedGoogle Scholar
  45. 45.
    Sakurai T (2012) The role of NrCAM in neural development and disorders--beyond a simple glue in the brain. Mol Cell Neurosci 49:351–363CrossRefPubMedGoogle Scholar
  46. 46.
    Weber JD, Gutmann DH (2012) Deconvoluting mTOR biology. Cell Cycle 11:236–248PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Winham SJ, Cuellar-Barboza AB, McElroy SL et al (2014) Bipolar disorder with comorbid binge eating history: a genome-wide association study implicates APOB. J Affect Disord 165:151–158PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Qin M, Kang J, Smith CB (2002) Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99:15758–15763PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Besshoh S, Bawa D, Teves L et al (2005) Increased phosphorylation and redistribution of NMDA receptors between synaptic lipid rafts and post-synaptic densities following transient global ischemia in the rat brain. J Neurochem 93:186–194CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Carlos Córdova-Fletes
    • 1
    Email author
  • Ma. Guadalupe Domínguez
    • 2
  • Ilse Delint-Ramirez
    • 3
  • Herminia G. Martínez-Rodríguez
    • 1
  • Ana María Rivas-Estilla
    • 1
  • Patricio Barros-Núñez
    • 2
  • Rocío Ortiz-López
    • 1
  • Vivian Alejandra Neira
    • 2
  1. 1.Departamento de Bioquímica y Medicina Molecular, Facultad de MedicinaUniversidad Autónoma de Nuevo LeónMonterreyMéxico
  2. 2.División de Genética, Centro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
  3. 3.Departamento de Farmacología y Toxicología, Facultad de MedicinaUniversidad Autónoma de Nuevo LeónMonterreyMéxico

Personalised recommendations