, Volume 16, Issue 4, pp 277–285 | Cite as

Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice

  • Andy W. YangEmail author
  • Andrew J. Sachs
  • Arne M. Nystuen
Original Article


The progressive and permanent loss of cerebellar Purkinje cells (PC) is a hallmark of many inherited ataxias. Mutations in several genes involved in the regulation of Ca2+ release from intracellular stores by the second messenger IP3 have been associated with PC dysfunction or death. While much is known about the defects in production and response to IP3, less is known about the defects in breakdown of the IP3 second messenger. A mutation in Inpp4a of the pathway is associated with a severe, early-onset PC degeneration in the mouse model weeble. The step preceding the removal of the 4-phosphate is the removal of the 5-phosphate by Inpp5a. Gene expression analysis was performed on an Inpp5a Gt(OST50073)Lex mouse generated by gene trap insertion using quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blot. Phenotypic analyses were performed using rotarod, β-galactosidase staining, and phosphatase activity assay. Statistical significance was calculated. The deletion of Inpp5a causes an early-onset yet slowly progressive PC degeneration and ataxia. Homozygous mutants (90 %) exhibit perinatal lethality; surviving homozygotes show locomotor instability at P16. A consistent pattern of PC loss in the cerebellum is initially detectable by weaning and widespread by P60. Phosphatase activity toward phosphoinositol substrates is reduced in the mutant relative to littermates. The ataxic phenotype and characteristics neurodegeneration of the Inpp5a Gt(OST50073)Lex mouse indicate a crucial role for Inpp5a in PC survival. The identification of the molecular basis of the selective PC survival will be important in defining a neuroprotective gene applicable to establishing a disease mechanism.


Inpp5a Knockout mouse Cerebellar degeneration Ataxia 



We would like to acknowledge Emily Strunk, a summer undergraduate student in the lab, for her assistance in the molecular genetic studies. We would also like to thank Dr. Vimla Band, Department Chair of Genetics, Cell Biology, and Anatomy, and Dr. H. Dele Davies, Vice Chancellor of Academic Affairs at the University of Nebraska Medical Center for providing publication funding. 

The work was previously supported by the University of Nebraska Medical Center. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There is no current funding source for the study.

Competing interests

The authors have declared that no competing interests exist.

Supplementary material

Mutation of Inpp5a causes an ataxic disorder. A P21 mutant and littermate control are shown (MPG 8581 kb)


  1. 1.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529CrossRefPubMedGoogle Scholar
  2. 2.
    Majerus PW, Kisseleva MV, Norris FA (1999) The role of phosphatases in inositol signaling reactions. J Biol Chem 274:10669–10672CrossRefPubMedGoogle Scholar
  3. 3.
    Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765CrossRefPubMedGoogle Scholar
  4. 4.
    Dzubay JA, Otis TS (2002) Climbing fiber activation of metabotropic glutamate receptors on cerebellar purkinje neurons. Neuron 36:1159–1167CrossRefPubMedGoogle Scholar
  5. 5.
    Tanaka J, Nakagawa S, Kushiya E, Yamasaki M, Fukaya M et al (2000) Gq protein alpha subunits Galphaq and Galpha11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. Eur J Neurosci 12:781–792CrossRefPubMedGoogle Scholar
  6. 6.
    Kim D, Jun KS, Lee SB, Kang NG, Min DS et al (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:290–293CrossRefPubMedGoogle Scholar
  7. 7.
    Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212:473–482PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Schorge S, van de Leemput J, Singleton A, Houlden H, Hardy J (2010) Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends Neurosci 33(5):211–219CrossRefPubMedGoogle Scholar
  9. 9.
    Bettencourt C, Ryten M, Forabosco P, Schorge S, Hersheson J, Hardy J, Houlden H (2014) Insights from cerebellar transcriptomic analysis into the pathogenesis of ataxia. JAMA Neurol 71(7):831–839PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212CrossRefPubMedGoogle Scholar
  11. 11.
    Norris FA, Auethavekiat V, Majerus PW (1995) The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J Biol Chem 270:16128–16133CrossRefPubMedGoogle Scholar
  12. 12.
    Norris FA, Atkins RC, Majerus PW (1997) The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J Biol Chem 272:23859–23864CrossRefPubMedGoogle Scholar
  13. 13.
    Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S et al (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170:607–618PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S et al (2005) The type Ialpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol Biol Cell 16:2218–2233PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Laxminarayan KM, Chan BK, Tetaz T, Bird PI, Mitchell CA (1994) Characterization of a cDNA encoding the 43-kDa membrane-associated inositol-polyphosphate 5-phosphatase. J Biol Chem 269:17305–17310PubMedGoogle Scholar
  16. 16.
    Kisseleva MV, Wilson MP, Majerus PW (2000) The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J Biol Chem 275:20110–20116CrossRefPubMedGoogle Scholar
  17. 17.
    Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L et al (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41:1032–1036PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Jacoby M, Cox JJ, Gayral S, Hampshire DJ, Ayub M et al (2009) INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41:1027–1031CrossRefPubMedGoogle Scholar
  19. 19.
    Sachs AJ, Schwendinger JK, Yang AW, Haider NB, Nystuen AM (2007) The mouse mutants recoil wobbler and nmf373 represent a series of Grm1 mutations. Mamm Genome 18:749–756CrossRefPubMedGoogle Scholar
  20. 20.
    Sachs AJ, David SA, Haider NB, Nystuen AM (2009) Patterned neuroprotection in the Inpp4a(wbl) mutant mouse cerebellum correlates with the expression of Eaat4. PLoS One 4, e8270PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ (2014) The UCSC Genome Browser Database: 2014 Update. Nucleic Acids Res 42(1):D764–D760PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F et al (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237–243CrossRefPubMedGoogle Scholar
  23. 23.
    Offermanns S, Hashimoto K, Watanabe M, Sun W, Kurihara H et al (1997) Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Galphaq. Proc Natl Acad Sci U S A 94:14089–14094PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Street VA, Bosma MM, Demas VP, Regan MR, Lin DD et al (1997) The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J Neurosci 17:635–645PubMedGoogle Scholar
  25. 25.
    Matsumoto M, Nakagawa T, Inoui T, Nagata E, Tanaka K et al (1996) Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379:168–171CrossRefPubMedGoogle Scholar
  26. 26.
    Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG et al (2005) Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171:1239–1246PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Bataller L, Sabater L, Saiz A, Serra C, Claramonte B et al (2004) Carbonic anhydrase-related protein VIII: autoantigen in paraneoplastic cerebellar degeneration. Ann Neurol 56:575–579CrossRefPubMedGoogle Scholar
  28. 28.
    Sillevis Smitt P, Kinoshita A, De Leeuw B, Moll W, Coesmans M et al (2000) Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 342:21–27CrossRefPubMedGoogle Scholar
  29. 29.
    van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y et al (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551CrossRefPubMedGoogle Scholar
  31. 31.
    Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D et al (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35CrossRefPubMedGoogle Scholar
  32. 32.
    Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R et al (2007) Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med 4, e182PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Osborne SL, Thomas CL, Gschmeissner S, Schiavo G (2001) Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114:2501–2511PubMedGoogle Scholar
  34. 34.
    York JD, Majerus PW (1994) Nuclear phosphatidylinositols decrease during S-phase of the cell cycle in HeLa cells. J Biol Chem 269:7847–7850PubMedGoogle Scholar
  35. 35.
    Yamada K, Wada S, Watanabe M, Tanaka K, Wada K et al (1997) Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells. Neurosci Res 27:191–198CrossRefPubMedGoogle Scholar
  36. 36.
    Fletcher CF, Lutz CM, O’Sullivan TN, Shaughnessy JD Jr, Hawkes R et al (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617CrossRefPubMedGoogle Scholar
  37. 37.
    Edwards MA, Leclerc N, Crandall JE, Yamamoto M (1994) Purkinje cell compartments in the reeler mutant mouse as revealed by Zebrin II and 90-acetylated glycolipid antigen expression. Anat Embryol (Berl) 190:417–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andy W. Yang
    • 1
    Email author
  • Andrew J. Sachs
    • 1
  • Arne M. Nystuen
    • 1
  1. 1.The Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations