, Volume 15, Issue 4, pp 255–266 | Cite as

Genes and Gene Networks Implicated in Aggression Related Behaviour

  • Karim MalkiEmail author
  • Oliver Pain
  • Ebba Du Rietz
  • Maria Grazia Tosto
  • Jose Paya-Cano
  • Kenneth N. Sandnabba
  • Sietse de Boer
  • Leonard C. Schalkwyk
  • Frans Sluyter
Original Article


Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.


Aggression WGCNA RankProd SAL/LAL TA/TNA NC900/NC100 



Karim Malki is supported by an MRC grant (G9817803). At the time of writing, Oliver Pain and Ebba Du Rietze were enrolled on the GED programme at the SGDP centre at the Institute of Psychiatry, King′s College London. We are grateful to the Director of the Programme, Dr. Cathy Fernandez for her support with this project.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10048_2014_417_MOESM1_ESM.pdf (94 kb)
Supplementary Figure 1 Flash clustered factors to identify any clear outliers. Red line shows height cut off (T = 43) marking outlying factors. (PDF 93 kb)
10048_2014_417_MOESM2_ESM.pdf (132 kb)
Supplementary Figure 2 Analysis of network topology for various soft-thresholding powers. Panel A shows the scale-free sit index (y-axis) as a function of the soft-thresholding power (x-axis). Panel B shows the mean connectivity (degree, y-axis) as a function of the soft thresholding power (x-axis). Shows the scale-free topology fit index curve flattens at approximately 0.9, determining a soft threshold of 10. (PDF 131 kb)
10048_2014_417_MOESM3_ESM.pdf (108 kb)
Supplementary Figure 3 Screen plot showing the percentage of variance explained by the principle components identified in the data. (PDF 108 kb)
10048_2014_417_MOESM4_ESM.pdf (100 kb)
Supplementary Figure 4 PCA was unable to identify any structure in the data representing gene expression differences based on aggression state. This is expected, as more predominant global-transcriptomic changes, dependent on aggression state, would have to occur for it to be detectable via PCA. However no outliers were detected. (PDF 99 kb)


  1. 1.
    World Health Organization W: Third Milestones of a Global Campaign for Violence Prevention Report 2007: Scaling Up. In. Geneva, Switzerland: WHO; 2007.Google Scholar
  2. 2.
    McGuire J (2008) A review of effective interventions for reducing aggression and violence. Philos Trans R Soc Lond B Biol Sci 363(1503):2577–2597PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Seroczynski AD, Bergeman CS, Coccaro EF (1999) Etiology of the impulsivity/aggression relationship: Genes or environment? Psychiatry Res 86(1):41–57PubMedCrossRefGoogle Scholar
  4. 4.
    Miles DR, Carey G (1997) Genetic and environmental architecture of human aggression. J Pers Soc Psychol 72(1):207–217PubMedCrossRefGoogle Scholar
  5. 5.
    Vassos E, Collier DA, Fazel S: Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular psychiatry 2013.Google Scholar
  6. 6.
    Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165(4):429–442PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8(7):536–546PubMedCrossRefGoogle Scholar
  8. 8.
    Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1(2):131–139PubMedCrossRefGoogle Scholar
  9. 9.
    Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33(26):2609–2614PubMedCrossRefGoogle Scholar
  10. 10.
    de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526(1–3):125–139PubMedCrossRefGoogle Scholar
  11. 11.
    Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265(5180):1875–1878PubMedCrossRefGoogle Scholar
  12. 12.
    Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580PubMedCrossRefGoogle Scholar
  13. 13.
    Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854PubMedCrossRefGoogle Scholar
  14. 14.
    Moffitt TE (2005) The new look of behavioral genetics in developmental psychopathology: Gene-environment interplay in antisocial behaviors. Psychol Bull 131(4):533–554PubMedCrossRefGoogle Scholar
  15. 15.
    Ficks CA, Waldman ID: Candidate Genes for Aggression and Antisocial Behavior: A Meta-analysis of Association Studies of the 5HTTLPR and MAOA-uVNTR. Behavior genetics 2014.Google Scholar
  16. 16.
    Lagerspetz K (1961) Genetic and social causes of aggressive behaviour in mice. Scand J Psychol 2(1):167–173CrossRefGoogle Scholar
  17. 17.
    van Oortmerssen GA, Bakker TC (1981) Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav Genet 11(2):115–126PubMedCrossRefGoogle Scholar
  18. 18.
    Sandnabba NK (1986) Effects of selective breeding for high and low aggressiveness and of fighting experience on odor discrimination in mice. Aggress Behav 12(5):359–366CrossRefGoogle Scholar
  19. 19.
    Natarajan D, Caramaschi D (2010) Animal violence demystified. Front Behav Neurosci 4:9PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sluyter F, Arseneault L, Moffitt TE, Veenema AH, de Boer S, Koolhaas JM (2003) Toward an animal model for antisocial behavior: Parallels between mice and humans. Behav Genet 33(5):563–574PubMedCrossRefGoogle Scholar
  21. 21.
    Brower MC, Price BH (2001) Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry 71(6):720–726PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    De Bruin JPC (1990) Orbital prefrontal cortex, dopamine, and social-agonistic behavior of male long evans rats. Aggress Behav 16(3–4):231–248CrossRefGoogle Scholar
  23. 23.
    Enserink M (2000) Searching for the Mark of Cain. Science 289(5479):575–579PubMedCrossRefGoogle Scholar
  24. 24.
    Raine A, Lencz T, Bihrle S, LaCasse L, Colletti P (2000) Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch Gen Psychiatry 57(2):119–127, discussion 128–119PubMedCrossRefGoogle Scholar
  25. 25.
    Keune PM, van der Heiden L, Varkuti B, Konicar L, Veit R, Birbaumer N (2012) Prefrontal brain asymmetry and aggression in imprisoned violent offenders. Neurosci Lett 515(2):191–195PubMedCrossRefGoogle Scholar
  26. 26.
    Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide T (2014) Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9(4):e94657PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9:559CrossRefGoogle Scholar
  28. 28.
    Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, Uher R, McGuffin P, Schalkwyk LC (2013) Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics 14(16):1979–1990PubMedCrossRefGoogle Scholar
  29. 29.
    Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ et al (2006) Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2(8):e130PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Malki K, Keers R, Tosto MG, Lourdusamy A, Carboni L, Domenici E, Uher R, McGuffin P, Schalkwyk LC (2014) The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC medicine 12(1):73PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264PubMedCrossRefGoogle Scholar
  32. 32.
    Gautier L, Cope L, Bolstad BM, Irizarry RA: affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, England) 2004, 20(3):307–315.Google Scholar
  33. 33.
    Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J et al (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18(12):1593–1599PubMedCrossRefGoogle Scholar
  34. 34.
    Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods--a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23(9):1164–1167PubMedCrossRefGoogle Scholar
  35. 35.
    Ingenuity Pathway Analysis []
  36. 36.
    Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1–3):83–92PubMedCrossRefGoogle Scholar
  37. 37.
    Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. J Bioinforma Comput Biol 3(5):1171–1189CrossRefGoogle Scholar
  38. 38.
    Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708PubMedCrossRefGoogle Scholar
  39. 39.
    Waterfield MR, Zhang M, Norman LP, Sun SC (2003) NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol Cell 11(3):685–694PubMedCrossRefGoogle Scholar
  40. 40.
    Konat GW, Kielian T, Marriott I (2006) The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem 99(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Feldker DE, Datson NA, Veenema AH, Meulmeester E, de Kloet ER, Vreugdenhil E (2003) Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. Eur J Neurosci 17(2):379–387PubMedCrossRefGoogle Scholar
  42. 42.
    Sluyter F, Jamot L, van Oortmerssen GA, Crusio WE (1994) Hippocampal mossy fiber distributions in mice selected for aggression. Brain Res 646(1):145–148PubMedCrossRefGoogle Scholar
  43. 43.
    Rao JS, Ertley RN, Lee HJ, DeMar JC Jr, Arnold JT, Rapoport SI, Bazinet RP (2007) n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 12(1):36–46PubMedCrossRefGoogle Scholar
  44. 44.
    Coccaro EF, Lee R, Coussons-Read M (2014) Elevated plasma inflammatory markers in individuals with intermittent explosive disorder and correlation with aggression in humans. JAMA psychiatry 71(2):158–165PubMedCrossRefGoogle Scholar
  45. 45.
    Coccaro EF, Lee R, Gozal D: Elevated Plasma Oxidative Stress Markers in Individuals with Intermittent Explosive Disorder and Correlation with Aggression in Humans. Biological psychiatry 2014.Google Scholar
  46. 46.
    Veenema AH, Meijer OC, de Kloet ER, Koolhaas JM, Bohus BG (2003) Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Horm Behav 43(1):197–204PubMedCrossRefGoogle Scholar
  47. 47.
    de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475PubMedCrossRefGoogle Scholar
  48. 48.
    Gray JD, Rubin TG (2013) Hunter RG. Hippocampal gene expression changes underlying stress sensitization and recovery. Molecular psychiatry, McEwen BSGoogle Scholar
  49. 49.
    Rachal Pugh C, Fleshner M, Watkins LR, Maier SF, Rudy JW (2001) The immune system and memory consolidation: a role for the cytokine IL-1beta. Neurosci Biobehav Rev 25(1):29–41PubMedCrossRefGoogle Scholar
  50. 50.
    Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45PubMedCrossRefGoogle Scholar
  51. 51.
    Lehmann ML, Brachman RA, Listwak SJ, Herkenham M (2010) NF-kappaB activity affects learning in aversive tasks: Possible actions via modulation of the stress axis. Brain Behav Immun 24(6):1008–1017PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR (2003) Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 8(5):546–557PubMedCrossRefGoogle Scholar
  53. 53.
    Barrett TB, Emberton JE, Nievergelt CM, Liang SG, Hauger RL, Eskin E, Schork NJ, Kelsoe JR (2007) Further evidence for association of GRK3 to bipolar disorder suggests a second disease mutation. Psychiatr Genet 17(6):315–322PubMedCrossRefGoogle Scholar
  54. 54.
    Rao JS, Rapoport SI, Kim HW (2009) Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients. Int J Neuropsychopharmacol 12(6):851–860PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Young KA, Berry ML, Mahaffey CL, Saionz JR, Hawes NL, Chang B, Zheng QY, Smith RS, Bronson RT, Nelson RJ et al (2002) Fierce: a new mouse deletion of Nr2e1: Violent behaviour and ocular abnormalities are background-dependent. Behav Brain Res 132(2):145–158PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wong BK, Hossain SM, Trinh E, Ottmann GA, Budaghzadeh S, Zheng QY, Simpson EM (2010) Hyperactivity, startle reactivity and cell-proliferation deficits are resistant to chronic lithium treatment in adult Nr2e1(frc/frc) mice. Genes Brain Behav 9(7):681–694PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Labonte B, Suderman M, Maussion G, Lopez JP, Navarro-Sanchez L, Yerko V, Mechawar N, Szyf M, Meaney MJ, Turecki G (2013) Genome-wide methylation changes in the brains of suicide completers. Am J Psychiatry 170(5):511–520PubMedCrossRefGoogle Scholar
  58. 58.
    Sluyter F, Takahashi A, Maxson SC: Pathological aggression In: Behavioral Genetics of the Mouse. Edited by Pietropaolo S, Sluyter F, Crusio WE, vol. 2. Published online at Cambridge University Press; 2014.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Karim Malki
    • 1
    Email author
  • Oliver Pain
    • 1
  • Ebba Du Rietz
    • 1
  • Maria Grazia Tosto
    • 2
    • 3
  • Jose Paya-Cano
    • 1
  • Kenneth N. Sandnabba
    • 4
  • Sietse de Boer
    • 5
  • Leonard C. Schalkwyk
    • 1
    • 7
  • Frans Sluyter
    • 6
  1. 1.King′s College London, MRC Social, Genetic and Developmental Psychiatry CentreInstitute of PsychiatryLondonUK
  2. 2.Department of PsychologyUniversity of YorkYorkUK
  3. 3.Laboratory for Cognitive Investigations and Behavioural GeneticsTomsk State UniversityTomskRussia
  4. 4.Department of Psychology and LogopedicsÅbo Akademi UniversityTurkuFinland
  5. 5.Faculty of Mathematics and Natural SciencesGroningenThe Netherlands
  6. 6.Department of PsychologyUniversity of PortsmouthPortsmouthUK
  7. 7.School of Biological Sciences, University of EssexColchesterUK

Personalised recommendations