Advertisement

neurogenetics

, Volume 15, Issue 4, pp 217–228 | Cite as

DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors

  • Edward C. GilmoreEmail author
Review article

Abstract

Since identification of mutations in the ATM gene leading to ataxia-telangiectasia, enormous efforts have been devoted to discovering the roles this protein plays in DNA repair as well as other cellular functions. Even before the identification of ATM mutations, it was clear that other diseases with different genomic loci had very similar neurological symptoms. There has been significant progress in understanding why cancer and immunodeficiency occur in ataxia-telangiectasia even though many details remain to be determined, but the field is no closer to determining why the nervous system requires ATM and other DNA repair genes. Even though rodent disease models have similar DNA repair abnormalities as the human diseases, they have no consistent, robust neuropathological phenotype making it difficult to understand the neurological underpinnings of disease. Therefore, it may be useful to reassess the neurological and neuropathological characteristics of ataxia-telangiectasia in human patients to look for potential commonalities in DNA repair diseases that result in ataxia. In doing so, it is clear that ataxia-telangiectasia and similar diseases share neurological features other than merely ataxia, such as length-dependent motor and sensory neuropathies, and that the neuroanatomical localization for these symptoms is understood. Cells affected in ataxia-telangiectasia and similar diseases are some of the largest single nucleated cells in the body. In addition, a subset of these diseases also has extrapyramidal movements and oculomotor apraxia. These neurological and neuropathological similarities may indicate a common DNA repair related pathogenesis with very large cell size as a critical risk factor.

Keywords

DNA repair Ataxia Neurodegeneration Ataxia-telangiectasia Neuropathy 

References

  1. 1.
    Online Mendelian Inheritance in Man, OMIM. (2013) Johns Hopkins University (Baltimore, MD). http://omim.org/
  2. 2.
    Syllaba L, Henner K (1926) Contribution à l'étude de l'indépendance de l'athétose double idiopathique et congénitale. Atteinte familiale, syndrome dystrophique, signe du résau vasculaire conjonctival, intégrité psychique. Rev Neurol 1:541–562Google Scholar
  3. 3.
    Louis-Bar D (1941) Sur un syndrome progressif cormprenant des télangiectasies capillaires cutanées et conjonctivales symétriques, à disposition naevoïde et des troubles cérébelleux. Confinia Neurologica 4:32–42Google Scholar
  4. 4.
    Boder E, Sedgwick RP (1958) Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 21(4):526–554PubMedGoogle Scholar
  5. 5.
    Wells CE, Shy GM (1957) Progressive familial choreoathetosis with cutaneous telangiectasia. J Neurol Neurosurg Psychiatry 20(2):98–104PubMedPubMedCentralGoogle Scholar
  6. 6.
    Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT (1986) The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 39(5):573–583PubMedPubMedCentralGoogle Scholar
  7. 7.
    Pippard EC, Hall AJ, Barker DJ, Bridges BA (1988) Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. Cancer Res 48(10):2929–2932PubMedGoogle Scholar
  8. 8.
    Sedgwick RP, Boder E (1991) Ataxia-Telangiectasia. In: Vinken PJ, Bruyn GW, Klawans HL, Vianney de Jong JMB (eds) Hereditary Neuropathies and Spinocerebellar Atrophies, vol. 60. Handbook of Clinical Neurology. Elsevier Science Publishing Co. Inc, New York, pp 347–426Google Scholar
  9. 9.
    Hecht F, Koler RD, Rigas D, Dahnke GS, Case MP, Tisdale V, Miller RW (1966) Leukaemeia and lymphocytes in ataxia-telangiectasia. Lancet 288(7474):1193Google Scholar
  10. 10.
    Gotoff SP, Amirmokri E, Liebner EJ (1967) Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am J Dis Child 114(6):617–625PubMedGoogle Scholar
  11. 11.
    Morgan JL, Holcomb TM, Morrissey RW (1968) Radiation reaction in ataxia telangiectasia. Am J Dis Child 116(5):557–558PubMedGoogle Scholar
  12. 12.
    Oxford JM, Harnden DG, Parrington JM, Delhanty JD (1975) Specific chromosome aberrations in ataxia telangiectasia. J Med Genet 12(3):251–262PubMedPubMedCentralGoogle Scholar
  13. 13.
    Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268(5218):1749–1753PubMedGoogle Scholar
  14. 14.
    de Miranda NF, Bjorkman A, Pan-Hammarstrom Q (2011) DNA repair: the link between primary immunodeficiency and cancer. Ann N Y Acad Sci 1246:50–63. doi: 10.1111/j.1749-6632.2011.06322.x PubMedGoogle Scholar
  15. 15.
    Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99(6):577–587PubMedGoogle Scholar
  16. 16.
    Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonça P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M (2001) The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 29(2):189–193. doi: 10.1038/ng1001-189 PubMedGoogle Scholar
  17. 17.
    Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S (2001) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 29(2):184–188. doi: 10.1038/ng1001-184 PubMedGoogle Scholar
  18. 18.
    Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I, Moniz JC, Tranchant C, Aubourg P, Tazir M, Schols L, Pandolfo M, Schulz JB, Pouget J, Calvas P, Shizuka-Ikeda M, Shoji M, Tanaka M, Izatt L, Shaw CE, M'Zahem A, Dunne E, Bomont P, Benhassine T, Bouslam N, Stevanin G, Brice A, Guimaraes J, Mendonca P, Barbot C, Coutinho P, Sequeiros J, Durr A, Warter JM, Koenig M (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36(3):225–227PubMedGoogle Scholar
  19. 19.
    Takashima H, Boerkoel C, John J, Saifi G, Salih M, Armstrong D, Mao Y, Quiocho F, Roa B, Nakagawa M, Stockton D, Lupski J (2002) Mutation of TDP1, encoding a topoisomerase I–dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 32(2):267–272. doi: 10.1038/ng987 PubMedGoogle Scholar
  20. 20.
    Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Barry B, Gleason D, Allen K, Ganesh VS, Chang BS, Grix A, Hill RS, Topcu M, Caldecott KW, Barkovich AJ, Walsh CA (2010) Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 42(3):245–249. doi: 10.1038/ng.526 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Poulton C, Oegema R, Heijsman D, Hoogeboom J, Schot R, Stroink H, Willemsen MA, Verheijen FW, van de Spek P, Kremer A, Mancini GM (2013) Progressive cerebellar atrophy and polyneuropathy: expanding the spectrum of PNKP mutations. Neurogenetics 14(1):43–51. doi: 10.1007/s10048-012-0351-8 PubMedGoogle Scholar
  22. 22.
    Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171PubMedGoogle Scholar
  23. 23.
    Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J, Leder P (1996) Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A 93(23):13084–13089PubMedPubMedCentralGoogle Scholar
  24. 24.
    Xu Y, Baltimore D (1996) Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 10(19):2401–2410PubMedGoogle Scholar
  25. 25.
    Kuljis RO, Xu Y, Aguila MC, Baltimore D (1997) Degeneration of neurons, synapses, and neuropil and glial activation in a murine Atm knockout model of ataxia-telangiectasia. Proc Natl Acad Sci U S A 94(23):12688–12693PubMedPubMedCentralGoogle Scholar
  26. 26.
    Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280(5366):1089–1091PubMedGoogle Scholar
  27. 27.
    Borghesani PR, Alt FW, Bottaro A, Davidson L, Aksoy S, Rathbun GA, Roberts TM, Swat W, Segal RA, Gu Y (2000) Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc Natl Acad Sci U S A 97(7):3336–3341. doi: 10.1073/pnas.050584897 PubMedPubMedCentralGoogle Scholar
  28. 28.
    Spring K, Cross S, Li C, Watters D, Ben-Senior L, Waring P, Ahangari F, Lu SL, Chen P, Misko I, Paterson C, Kay G, Smorodinsky NI, Shiloh Y, Lavin MF (2001) Atm knock-in mice harboring an in-frame deletion corresponding to the human ATM 7636del9 common mutation exhibit a variant phenotype. Cancer Res 61(11):4561–4568PubMedGoogle Scholar
  29. 29.
    Lavin MF (2013) The appropriateness of the mouse model for ataxia-telangiectasia: Neurological defects but no neurodegeneration. DNA Repair (Amst) 12(8):612–619. doi: 10.1016/j.dnarep.2013.04.014 Google Scholar
  30. 30.
    Shull ER, Lee Y, Nakane H, Stracker TH, Zhao J, Russell HR, Petrini JH, McKinnon PJ (2009) Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev 23(2):171–180. doi: 10.1101/gad.1746609 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Katyal S, El-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, McKinnon PJ (2007) TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J 26(22):4720–4731. doi: 10.1038/sj.emboj.7601869 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hirano M, Yamamoto A, Mori T, Lan L, Iwamoto TA, Aoki M, Shimada K, Furiya Y, Kariya S, Asai H, Yasui A, Nishiwaki T, Imoto K, Kobayashi N, Kiriyama T, Nagata T, Konishi N, Itoyama Y, Ueno S (2007) DNA single-strand break repair is impaired in aprataxin-related ataxia. Ann Neurol 61(2):162–174. doi: 10.1002/ana.21078 PubMedGoogle Scholar
  33. 33.
    Hawkins AJ, Subler MA, Akopiants K, Wiley JL, Taylor SM, Rice AC, Windle JJ, Valerie K, Povirk LF (2009) In vitro complementation of Tdp1 deficiency indicates a stabilized enzyme-DNA adduct from tyrosyl but not glycolate lesions as a consequence of the SCAN1 mutation. DNA Repair (Amst) 8(5):654–663. doi: 10.1016/j.dnarep.2008.12.012 Google Scholar
  34. 34.
    Ahel I, Rass U, El-Khamisy S, Katyal S, Clements P, Mckinnon P, Caldecott K, West S (2006) The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443(7112):713–716. doi: 10.1038/nature05164 PubMedGoogle Scholar
  35. 35.
    Becherel OJ, Yeo AJ, Stellati A, Heng EY, Luff J, Suraweera AM, Woods R, Fleming J, Carrie D, McKinney K, Xu X, Deng C, Lavin MF (2013) Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet 9(4):e1003435. doi: 10.1371/journal.pgen.1003435 PubMedPubMedCentralGoogle Scholar
  36. 36.
    McConville CM, Stankovic T, Byrd PJ, McGuire GM, Yao QY, Lennox GG, Taylor MR (1996) Mutations associated with variant phenotypes in ataxia-telangiectasia. Am J Hum Genet 59(2):320–330PubMedPubMedCentralGoogle Scholar
  37. 37.
    Stankovic T, Kidd AM, Sutcliffe A, McGuire GM, Robinson P, Weber P, Bedenham T, Bradwell AR, Easton DF, Lennox GG, Haites N, Byrd PJ, Taylor AM (1998) ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 62(2):334–345. doi: 10.1086/301706 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Verhagen MM, Abdo WF, Willemsen MA, Hogervorst FB, Smeets DF, Hiel JA, Brunt ER, van Rijn MA, Majoor Krakauer D, Oldenburg RA, Broeks A, Last JI, van't Veer LJ, Tijssen MA, Dubois AM, Kremer HP, Weemaes CM, Taylor AM, van Deuren M (2009) Clinical spectrum of ataxia-telangiectasia in adulthood. Neurology 73(6):430–437. doi: 10.1212/WNL.0b013e3181af33bd PubMedGoogle Scholar
  39. 39.
    Verhagen MM, Martin JJ, van Deuren M, Ceuterick-de Groote C, Weemaes CM, Kremer BH, Taylor MA, Willemsen MA, Lammens M (2012) Neuropathology in classical and variant ataxia-telangiectasia. Neuropathol: Off J Jpn Soc Neuropathol 32(3):234–244. doi: 10.1111/j.1440-1789.2011.01263.x Google Scholar
  40. 40.
    Larnaout A, Belal S, Ben Hamida C, Ben Hamida M, Hentati F (1998) Atypical ataxia telangiectasia with early childhood lower motor neuron degeneration: a clinicopathological observation in three siblings. J Neurol 245(4):231–235PubMedGoogle Scholar
  41. 41.
    Paula-Barbosa MM, Ruela C, Tavares MA, Pontes C, Saraiva A, Cruz C (1983) Cerebellar cortex ultrastructure in ataxia-telangiectasia. Ann Neurol 13(3):297–302. doi: 10.1002/ana.410130312 PubMedGoogle Scholar
  42. 42.
    Vinters HV, Gatti RA, Rakic P (1985) Sequence of cellular events in cerebellar ontogney relevent to expression of neuronal abnormalities in ataxia-telangiectasia. In: Gatti RA, Swift M (eds) Ataxia-Telangiectasia Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood. Alan R. Liss, Inc., New York, pp 233–255Google Scholar
  43. 43.
    Rakic P, Sidman RL (1973) Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 152(2):103–132. doi: 10.1002/cne.901520202 PubMedGoogle Scholar
  44. 44.
    Goldowitz D, Mullen RJ (1982) Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci 2(10):1474–1485PubMedGoogle Scholar
  45. 45.
    Boder E (1985) Ataxia-Telangiectasia: An Overview. In: Gatti RA, Swift M (eds) Ataxia-telangiectasia: genetics, neuropathology, and immunology of a degenerative disease of childhood. Alan R. Liss, Inc., New York, pp 1–63Google Scholar
  46. 46.
    Aguilar MJ, Kamoshita S, Landing BH, Boder E, Sedgwick RP (1968) Pathological observations in ataxia-telangiectasia. A report of five cases. J Neuropathol Exp Neurol 27(4):659–676PubMedGoogle Scholar
  47. 47.
    Martinez AC, Barrio M, Gutierrez AM, Lopez (1977) Abnormalities in sensory and mixed evoked potentials in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry 40(1):44–49PubMedPubMedCentralGoogle Scholar
  48. 48.
    Amromin GD, Boder E, Teplitz R (1979) Ataxia-telangiectasia with a 32 year survival. A clinicopathological report. J Neuropathol Exp Neurol 38(6):621–643PubMedGoogle Scholar
  49. 49.
    Verhagen MM, van Alfen N, Pillen S, Weemaes CM, Yntema JL, Hiel JA, Ter Laak H, van Deuren M, Broeks A, Willemsen MA (2007) Neuromuscular abnormalities in ataxia telangiectasia: a clinical, electrophysiological and muscle ultrasound study. Neuropediatrics 38(3):117–121. doi: 10.1055/s-2007-985899 PubMedGoogle Scholar
  50. 50.
    Strich SJ (1966) Pathological findings in three cases of ataxia-telangiectasia. J Neurol Neurosurg Psychiatry 29:489–499PubMedCentralGoogle Scholar
  51. 51.
    Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 2–1987. A 30-year-old man with ataxia-telangiectasia and dysphagia (1987). The New England journal of medicine 316 (2):91–100. doi:10.1056/NEJM198701083160206Google Scholar
  52. 52.
    Shaikh AG, Zee DS, Mandir AS, Lederman HM, Crawford TO (2013) Disorders of Upper Limb Movements in Ataxia-Telangiectasia. PLoS ONE 8(6):e67042. doi: 10.1371/journal.pone.0067042 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Centerwall WR, Miller MM (1958) Ataxia, telangiectasia, and sinopulmonary infections; a syndrome of slowly progressive deterioration in childhood. AMA J Dis Child 95(4):385–396PubMedGoogle Scholar
  54. 54.
    De Leon GA, Grover WD, Huff DS (1976) Neuropathologic changes in ataxia-telangiectasia. Neurology 26(10):947–951PubMedGoogle Scholar
  55. 55.
    Agamanolis DP, Greenstein JI (1979) Ataxia-telangiectasia. Report of a case with Lewy bodies and vascular abnormalities within cerebral tissue. J Neuropathol Exp Neurol 38(5):475–489PubMedGoogle Scholar
  56. 56.
    Monaco S, Nardelli E, Moretto G, Cavallaro T, Rizzuto N (1988) Cytoskeletal pathology in ataxia-telangiectasia. Clin Neuropathol 7(1):44–46PubMedGoogle Scholar
  57. 57.
    Volkow ND, Tomasi D, Wang GJ, Studentsova Y, Margus B, Crawford TO (2014) Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives. Brain J Neurol. doi: 10.1093/brain/awu092 Google Scholar
  58. 58.
    Baloh RW, Yee RD, Boder E (1978) Eye movements in ataxia-telangiectasia. Neurology 28(11):1099–1104PubMedGoogle Scholar
  59. 59.
    Lewis RF, Lederman HM, Crawford TO (1999) Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol 46(3):287–295PubMedGoogle Scholar
  60. 60.
    Reye C (1960) Ataxia-Telangiectasia Report of a Case. AMA J Dis Child 99(2):238–241Google Scholar
  61. 61.
    Lin DD, Barker PB, Lederman HM, Crawford TO (2014) Cerebral abnormalities in adults with ataxia-telangiectasia. AJNR Am J Neuroradiol 35(1):119–123. doi: 10.3174/ajnr.A3646 PubMedGoogle Scholar
  62. 62.
    Navarro C, Martin JJ (1972) Peculiar lesions in Louis-Bar ataxia-telangiectasia. Nucleo-cytoplasmic malformations at the level of ganglionic neuroglia and in a certain number of visceral organs. J Neurol Sci 17(2):219–231PubMedGoogle Scholar
  63. 63.
    Hernandez D, McConville CM, Stacey M, Woods CG, Brown MM, Shutt P, Rysiecki G, Taylor AM (1993) A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 11q22-23. J Med Genet 30(2):135–140PubMedPubMedCentralGoogle Scholar
  64. 64.
    Klein C, Wenning GK, Quinn NP, Marsden CD (1996) Ataxia without telangiectasia masquerading as benign hereditary chorea. Mov Disord: Off J Mov Disord Soc 11(2):217–220. doi: 10.1002/mds.870110217 Google Scholar
  65. 65.
    Delia D, Piane M, Buscemi G, Savio C, Palmeri S, Lulli P, Carlessi L, Fontanella E, Chessa L (2004) MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia-like disorder. Hum Mol Genet 13(18):2155–2163. doi: 10.1093/hmg/ddh221 PubMedGoogle Scholar
  66. 66.
    Fernet M, Gribaa M, Salih MA, Seidahmed MZ, Hall J, Koenig M (2005) Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet 14(2):307–318. doi: 10.1093/hmg/ddi027 PubMedGoogle Scholar
  67. 67.
    Sekijima Y, Ohara S, Nakagawa S, Tabata K, Yoshida K, Ishigame H, Shimizu Y, Yanagisawa N (1998) Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci 158(1):30–37PubMedGoogle Scholar
  68. 68.
    Barbot C, Coutinho P, Chorao R, Ferreira C, Barros J, Fineza I, Dias K, Monteiro J, Guimaraes A, Mendonca P, do Ceu Moreira M, Sequeiros J (2001) Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch Neurol 58(2):201–205PubMedGoogle Scholar
  69. 69.
    Shimazaki H, Takiyama Y, Sakoe K, Ikeguchi K, Niijima K, Kaneko J, Namekawa M, Ogawa T, Date H, Tsuji S, Nakano I, Nishizawa M (2002) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology 59(4):590–595PubMedGoogle Scholar
  70. 70.
    Le Ber I, Moreira MC, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, Tardieu M, Said G, Habert MO, Demarquay G, Tannier C, Beis JM, Brice A, Koenig M, Durr A (2003) Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain J Neurol 126(Pt 12):2761–2772. doi: 10.1093/brain/awg283 Google Scholar
  71. 71.
    Tranchant C, Fleury M, Moreira MC, Koenig M, Warter JM (2003) Phenotypic variability of aprataxin gene mutations. Neurology 60(5):868–870PubMedGoogle Scholar
  72. 72.
    Habeck M, Zuhlke C, Bentele KH, Unkelbach S, Kress W, Burk K, Schwinger E, Hellenbroich Y (2004) Aprataxin mutations are a rare cause of early onset ataxia in Germany. J Neurol 251(5):591–594. doi: 10.1007/s00415-004-0374-7 PubMedGoogle Scholar
  73. 73.
    Amouri R, Moreira MC, Zouari M, El Euch G, Barhoumi C, Kefi M, Belal S, Koenig M, Hentati F (2004) Aprataxin gene mutations in Tunisian families. Neurology 63(5):928–929PubMedGoogle Scholar
  74. 74.
    Criscuolo C, Mancini P, Menchise V, Sacca F, De Michele G, Banfi S, Filla A (2005) Very late onset in ataxia oculomotor apraxia type I. Ann Neurol 57(5):777. doi: 10.1002/ana.20463 PubMedGoogle Scholar
  75. 75.
    D'Arrigo S, Riva D, Bulgheroni S, Chiapparini L, Castellotti B, Gellera C, Pantaleoni C (2008) Ataxia with oculomotor apraxia type 1 (AOA1): clinical and neuropsychological features in 2 new patients and differential diagnosis. J Child Neurol 23(8):895–900. doi: 10.1177/0883073808314959 PubMedGoogle Scholar
  76. 76.
    Nemeth AH, Bochukova E, Dunne E, Huson SM, Elston J, Hannan MA, Jackson M, Chapman CJ, Taylor AM (2000) Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am J Hum Genet 67(5):1320–1326. doi: 10.1016/S0002-9297(07)62962-0 PubMedPubMedCentralGoogle Scholar
  77. 77.
    Le Ber I, Bouslam N, Rivaud-Pechoux S, Guimaraes J, Benomar A, Chamayou C, Goizet C, Moreira MC, Klur S, Yahyaoui M, Agid Y, Koenig M, Stevanin G, Brice A, Durr A (2004) Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain J Neurol 127(Pt 4):759–767. doi: 10.1093/brain/awh080 Google Scholar
  78. 78.
    Duquette A, Roddier K, McNabb-Baltar J, Gosselin I, St-Denis A, Dicaire MJ, Loisel L, Labuda D, Marchand L, Mathieu J, Bouchard JP, Brais B (2005) Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol 57(3):408–414. doi: 10.1002/ana.20408 PubMedGoogle Scholar
  79. 79.
    Criscuolo C, Chessa L, Di Giandomenico S, Mancini P, Sacca F, Grieco GS, Piane M, Barbieri F, De Michele G, Banfi S, Pierelli F, Rizzuto N, Santorelli FM, Gallosti L, Filla A, Casali C (2006) Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study. Neurology 66(8):1207–1210. doi: 10.1212/01.wnl.0000208402.10512.4a PubMedGoogle Scholar
  80. 80.
    Asaka T, Yokoji H, Ito J, Yamaguchi K, Matsushima A (2006) Autosomal recessive ataxia with peripheral neuropathy and elevated AFP: novel mutations in SETX. Neurology 66(10):1580–1581. doi: 10.1212/01.wnl.0000216135.59699.9b PubMedGoogle Scholar
  81. 81.
    Nicolaou P, Georghiou A, Votsi C, Middleton LT, Zamba-Papanicolaou E, Christodoulou K (2008) A novel c.5308_5311delGAGA mutation in Senataxin in a Cypriot family with an autosomal recessive cerebellar ataxia. BMC Med Genet 9:28PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tazir M, Ali-Pacha L, M'Zahem A, Delaunoy JP, Fritsch M, Nouioua S, Benhassine T, Assami S, Grid D, Vallat JM, Hamri A, Koenig M (2009) Ataxia with oculomotor apraxia type 2: a clinical and genetic study of 19 patients. J Neurol Sci 278(1–2):77–81. doi: 10.1016/j.jns.2008.12.004 PubMedGoogle Scholar
  83. 83.
    Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, Delaunoy JP, Fritsch M, Arning L, Synofzik M, Schols L, Sequeiros J, Goizet C, Marelli C, Le Ber I, Koht J, Gazulla J, De Bleecker J, Mukhtar M, Drouot N, Ali-Pacha L, Benhassine T, Chbicheb M, M'Zahem A, Hamri A, Chabrol B, Pouget J, Murphy R, Watanabe M, Coutinho P, Tazir M, Durr A, Brice A, Tranchant C, Koenig M (2009) Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain J Neurol 132(Pt 10):2688–2698. doi: 10.1093/brain/awp211 Google Scholar
  84. 84.
    Gomez-Herreros F, Schuurs-Hoeijmakers JH, McCormack M, Greally MT, Rulten S, Romero-Granados R, Counihan TJ, Chaila E, Conroy J, Ennis S, Delanty N, Cortes-Ledesma F, de Brouwer AP, Cavalleri GL, El-Khamisy SF, de Vries BB, Caldecott KW (2014) TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat Genet. doi: 10.1038/ng.2929 PubMedGoogle Scholar
  85. 85.
    Al Tassan N, Khalil D, Shinwari J, Al Sharif L, Bavi P, Abduljaleel Z, Abu Dhaim N, Magrashi A, Bobis S, Ahmed H, Alahmed S, Bohlega S (2012) A missense mutation in PIK3R5 gene in a family with ataxia and oculomotor apraxia. Hum Mutat 33(2):351–354. doi: 10.1002/humu.21650 PubMedGoogle Scholar
  86. 86.
    Anheim M, Tranchant C, Koenig M (2012) The autosomal recessive cerebellar ataxias. N Engl J Med 366(7):636–646. doi: 10.1056/NEJMra1006610 PubMedGoogle Scholar
  87. 87.
    Fogel BL (2012) Childhood cerebellar ataxia. J Child Neurol 27(9):1138–1145. doi: 10.1177/0883073812448231 PubMedPubMedCentralGoogle Scholar
  88. 88.
    Harding AE (1981) Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain J Neurol 104(3):589–620Google Scholar
  89. 89.
    Koeppen AH (2011) Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 303(1–2):1–12. doi: 10.1016/j.jns.2011.01.010 PubMedPubMedCentralGoogle Scholar
  90. 90.
    Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (1996) Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med 335(16):1169–1175. doi: 10.1056/NEJM199610173351601 PubMedGoogle Scholar
  91. 91.
    Harding AE, Matthews S, Jones S, Ellis CJ, Booth IW, Muller DP (1985) Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N Engl J Med 313(1):32–35. doi: 10.1056/NEJM198507043130107 PubMedGoogle Scholar
  92. 92.
    Ouahchi K, Arita M, Kayden H, Hentati F, Ben Hamida M, Sokol R, Arai H, Inoue K, Mandel JL, Koenig M (1995) Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 9(2):141–145. doi: 10.1038/ng0295-141 PubMedGoogle Scholar
  93. 93.
    Jayadev S, Bird TD (2013) Hereditary ataxias: overview. Genet Med: Off J Am Coll Med Genet 15(9):673–683. doi: 10.1038/gim.2013.28 Google Scholar
  94. 94.
    Verbeek DS, van de Warrenburg BP (2011) Genetics of the dominant ataxias. Semin Neurol 31(5):461–469. doi: 10.1055/s-0031-1299785 PubMedGoogle Scholar
  95. 95.
    Matilla-Duenas A, Corral-Juan M, Volpini V, Sanchez I (2012) The spinocerebellar ataxias: clinical aspects and molecular genetics. Adv Exp Med Biol 724:351–374. doi: 10.1007/978-1-4614-0653-2_27 PubMedGoogle Scholar
  96. 96.
    Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631. doi: 10.1038/nrg2380 PubMedGoogle Scholar
  97. 97.
    McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10(2):100–112. doi: 10.1038/nrn2559 PubMedPubMedCentralGoogle Scholar
  98. 98.
    Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584(17):3682–3695. doi: 10.1016/j.febslet.2010.07.029 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Bensimon A, Aebersold R, Shiloh Y (2011) Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 585(11):1625–1639. doi: 10.1016/j.febslet.2011.05.013 PubMedGoogle Scholar
  100. 100.
    El-Khamisy SF (2011) To live or to die: a matter of processing damaged DNA termini in neurons. EMBO Mol Med 3(2):78–88. doi: 10.1002/emmm.201000114 PubMedPubMedCentralGoogle Scholar
  101. 101.
    Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond Ser B Biol Sci 366(1584):3562–3571. doi: 10.1098/rstb.2011.0070 Google Scholar
  102. 102.
    Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94(2):166–200. doi: 10.1016/j.pneurobio.2011.04.013 PubMedPubMedCentralGoogle Scholar
  103. 103.
    Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37(1):15–22. doi: 10.1016/j.tibs.2011.10.002 PubMedPubMedCentralGoogle Scholar
  104. 104.
    Hoche F, Seidel K, Theis M, Vlaho S, Schubert R, Zielen S, Kieslich M (2012) Neurodegeneration in ataxia telangiectasia: what is new? What is evident? Neuropediatrics 43(3):119–129. doi: 10.1055/s-0032-1313915 PubMedGoogle Scholar
  105. 105.
    McKinnon PJ (2012) ATM and the molecular pathogenesis of ataxia telangiectasia. Annu Rev Pathol 7:303–321. doi: 10.1146/annurev-pathol-011811-132509 PubMedGoogle Scholar
  106. 106.
    Reynolds JJ, Stewart GS (2013) A nervous predisposition to unrepaired DNA double strand breaks. DNA Repair (Amst). doi: 10.1016/j.dnarep.2013.04.011 Google Scholar
  107. 107.
    Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210. doi: 10.1038/nrm3546 Google Scholar
  108. 108.
    McKinnon PJ (2013) Maintaining genome stability in the nervous system. Nat Neurosci 16(11):1523–1529. doi: 10.1038/nn.3537 PubMedGoogle Scholar
  109. 109.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166. doi: 10.1126/science.1140321 PubMedGoogle Scholar
  110. 110.
    Takahashi T, Tada M, Igarashi S, Koyama A, Date H, Yokoseki A, Shiga A, Yoshida Y, Tsuji S, Nishizawa M, Onodera O (2007) Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3′-phosphate and 3′-phosphoglycolate ends. Nucleic Acids Res 35(11):3797–3809. doi: 10.1093/nar/gkm158 PubMedPubMedCentralGoogle Scholar
  111. 111.
    Pouliot JJ, Yao KC, Robertson CA, Nash HA (1999) Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 286(5439):552–555PubMedGoogle Scholar
  112. 112.
    Interthal H, Chen HJ, Champoux JJ (2005) Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem 280(43):36518–36528. doi: 10.1074/jbc.M508898200 PubMedPubMedCentralGoogle Scholar
  113. 113.
    Lebedeva NA, Rechkunova NI, Lavrik OI (2011) AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1. FEBS Lett 585(4):683–686. doi: 10.1016/j.febslet.2011.01.032 PubMedGoogle Scholar
  114. 114.
    Lebedeva NA, Rechkunova NI, El-Khamisy SF, Lavrik OI (2012) Tyrosyl-DNA phosphodiesterase 1 initiates repair of apurinic/apyrimidinic sites. Biochimie 94(8):1749–1753. doi: 10.1016/j.biochi.2012.04.004 PubMedPubMedCentralGoogle Scholar
  115. 115.
    Lebedeva NA, Rechkunova NI, Ishchenko AA, Saparbaev M, Lavrik OI (2013) The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of AP site and its synthetic analogs. DNA Repair (Amst). doi: 10.1016/j.dnarep.2013.09.008 Google Scholar
  116. 116.
    Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, Weinfeld M, Caldecott KW (2001) XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104(1):107–117PubMedGoogle Scholar
  117. 117.
    Plo I, Liao ZY, Barceló JM, Kohlhagen G, Caldecott KW, Weinfeld M, Pommier Y (2003) Association of XRCC1 and tyrosyl DNA phosphodiesterase (Tdp1) for the repair of topoisomerase I-mediated DNA lesions. DNA Repair (Amst) 2(10):1087–1100Google Scholar
  118. 118.
    Koch CA, Agyei R, Galicia S, Metalnikov P, O'Donnell P, Starostine A, Weinfeld M, Durocher D (2004) Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. EMBO J 23(19):3874–3885. doi: 10.1038/sj.emboj.7600375 PubMedPubMedCentralGoogle Scholar
  119. 119.
    Reynolds JJ, Walker AK, Gilmore EC, Walsh CA, Caldecott KW (2012) Impact of PNKP mutations associated with microcephaly, seizures and developmental delay on enzyme activity and DNA strand break repair. Nucleic Acids Res 40(14):6608–6619. doi: 10.1093/nar/gks318 PubMedPubMedCentralGoogle Scholar
  120. 120.
    Suraweera A, Becherel OJ, Chen P, Rundle N, Woods R, Nakamura J, Gatei M, Criscuolo C, Filla A, Chessa L, Fusser M, Epe B, Gueven N, Lavin MF (2007) Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J Cell Biol 177(6):969–979. doi: 10.1083/jcb.200701042 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Suraweera A, Lim Y, Woods R, Birrell GW, Nasim T, Becherel OJ, Lavin MF (2009) Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum Mol Genet 18(18):3384–3396. doi: 10.1093/hmg/ddp278 PubMedGoogle Scholar
  122. 122.
    De Amicis A, Piane M, Ferrari F, Fanciulli M, Delia D, Chessa L (2011) Role of senataxin in DNA damage and telomeric stability. DNA Repair (Amst) 10(2):199–209. doi: 10.1016/j.dnarep.2010.10.012 Google Scholar
  123. 123.
    Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42(6):794–805. doi: 10.1016/j.molcel.2011.04.026 PubMedPubMedCentralGoogle Scholar
  124. 124.
    Yuce O, West SC (2013) Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol 33(2):406–417. doi: 10.1128/MCB.01195-12 PubMedPubMedCentralGoogle Scholar
  125. 125.
    Katyal S, Lee Y, Nitiss KC, Downing SM, Li Y, Shimada M, Zhao J, Russell HR, Petrini JH, Nitiss JL, McKinnon PJ (2014) Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci 17(6):813–821. doi: 10.1038/nn.3715 PubMedGoogle Scholar
  126. 126.
    Elia M (1991) Organ and tissue contribution to metabolic rate. In: John M, Kinney HNT (eds) Energy Metabolism: Tissue Determinants and Cellular Corollaries. Raven Press, Ltd., New York, pp 61–79Google Scholar
  127. 127.
    Dolle ME, Snyder WK, Dunson DB, Vijg J (2002) Mutational fingerprints of aging. Nucleic Acids Res 30(2):545–549PubMedPubMedCentralGoogle Scholar
  128. 128.
    Maslov AY, Ganapathi S, Westerhof M, Quispe-Tintaya W, White RR, Van Houten B, Reiling E, Dolle ME, van Steeg H, Hasty P, Hoeijmakers JH, Vijg J (2013) DNA damage in normally and prematurely aged mice. Aging Cell 12(3):467–477. doi: 10.1111/acel.12071 PubMedPubMedCentralGoogle Scholar
  129. 129.
    Acevedo-Torres K, Berrios L, Rosario N, Dufault V, Skatchkov S, Eaton MJ, Torres-Ramos CA, Ayala-Torres S (2009) Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington's disease. DNA Repair (Amst) 8(1):126–136. doi: 10.1016/j.dnarep.2008.09.004 Google Scholar
  130. 130.
    Canugovi C, Misiak M, Ferrarelli LK, Croteau DL, Bohr VA (2013) The role of DNA repair in brain related disease pathology. DNA Repair (Amst) 12(8):578–587. doi: 10.1016/j.dnarep.2013.04.010 Google Scholar
  131. 131.
    Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. doi: 10.1093/hmg/ddp326 PubMedPubMedCentralGoogle Scholar
  132. 132.
    Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. doi: 10.1126/science.1219855 PubMedGoogle Scholar
  133. 133.
    Stern N, Hochman A, Zemach N, Weizman N, Hammel I, Shiloh Y, Rotman G, Barzilai A (2002) Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice. J Biol Chem 277(1):602–608. doi: 10.1074/jbc.M106798200 PubMedGoogle Scholar
  134. 134.
    Eaton JS, Lin ZP, Sartorelli AC, Bonawitz ND, Shadel GS (2007) Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J Clin Invest 117(9):2723–2734. doi: 10.1172/JCI31604 PubMedPubMedCentralGoogle Scholar
  135. 135.
    Ambrose M, Goldstine JV, Gatti RA (2007) Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 16(18):2154–2164. doi: 10.1093/hmg/ddm166 PubMedGoogle Scholar
  136. 136.
    Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, Cleveland JL, Green DR, Kastan MB (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119(6):1490–1500. doi: 10.1182/blood-2011-08-373639 PubMedPubMedCentralGoogle Scholar
  137. 137.
    Stoykova AS, Dudov KP, Dabeva MD, Hadjiolov AA (1983) Different rates of synthesis and turnover of ribosomal RNA in rat brain and liver. J Neurochem 41(4):942–949PubMedGoogle Scholar
  138. 138.
    Stoykova AS, Dabeva MD, Dimova RN, Hadjiolov AA (1985) Ribosome biogenesis and nucleolar ultrastructure in neuronal and oligodendroglial rat brain cells. J Neurochem 45(6):1667–1676PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Child Neurology, Department of PediatricsCase Western Reserve University—Rainbow Babies and Children’s Hospital-University HospitalsClevelandUSA

Personalised recommendations