, Volume 15, Issue 3, pp 201–212 | Cite as

‘Neuroinflammation’ differs categorically from inflammation: transcriptomes of Alzheimer's disease, Parkinson's disease, schizophrenia and inflammatory diseases compared

  • Michaela D. Filiou
  • Ahmed Shamsul Arefin
  • Pablo Moscato
  • Manuel B. Graeber
Original Article


‘Neuroinflammation’ has become a widely applied term in the basic and clinical neurosciences but there is no generally accepted neuropathological tissue correlate. Inflammation, which is characterized by the presence of perivascular infiltrates of cells of the adaptive immune system, is indeed seen in the central nervous system (CNS) under certain conditions. Authors who refer to microglial activation as neuroinflammation confuse this issue because autoimmune neuroinflammation serves as a synonym for multiple sclerosis, the prototypical inflammatory disease of the CNS. We have asked the question whether a data-driven, unbiased in silico approach may help to clarify the nomenclatorial confusion. Specifically, we have examined whether unsupervised analysis of microarray data obtained from human cerebral cortex of Alzheimer's, Parkinson's and schizophrenia patients would reveal a degree of relatedness between these diseases and recognized inflammatory conditions including multiple sclerosis. Our results using two different data analysis methods provide strong evidence against this hypothesis demonstrating that very different sets of genes are involved. Consequently, the designations inflammation and neuroinflammation are not interchangeable. They represent different categories not only at the histophenotypic but also at the transcriptomic level. Therefore, non-autoimmune neuroinflammation remains a term in need of definition.


Bioinformatics Inflammation Microarrays Microglia Neurodegeneration Neuroinflammation 



Alzheimer’s disease


Central nervous system




Experimental autoimmune encephalomyelitis


Inflammatory bowel disease


Juvenile dermatomyositis


Major histocompatibility complex


Multiple sclerosis


Parkinson’s disease




Ulcerative colitis



M.D.F. is supported by a grant from the Deutsche Forschungsgemeinschaft. P.M. is funded by the ARC Future Fellowship FT120100060. This work was partially funded by the Maitland Cancer Appeal Committee, NSW, Australia and the Australian Research Council (ARC) Discovery Project Grants DP120102576 and DP140104183. We would like to thank Natalie de Vries for comments on the final version of this manuscript.

Supplementary material

10048_2014_409_MOESM1_ESM.pdf (895 kb)
ESM 1 (PDF 895 kb)
10048_2014_409_MOESM2_ESM.doc (62 kb)
ESM 2 (DOC 62 kb)
10048_2014_409_MOESM3_ESM.xls (348 kb)
ESM 3 (XLS 348 kb)
10048_2014_409_MOESM4_ESM.xls (795 kb)
ESM 4 (XLS 795 kb)
10048_2014_409_MOESM5_ESM.xls (28 mb)
ESM 5 (XLS 28706 kb)
10048_2014_409_MOESM6_ESM.doc (29 kb)
ESM 6 (DOC 29 kb)


  1. 1.
    Wiendl H (2012) Neuroinflammation: the world is not enough. Curr Opin Neurol 25:302–305. doi: 10.1097/WCO.0b013e3283534abf PubMedGoogle Scholar
  2. 2.
    Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585:3798–3805. doi: 10.1016/j.febslet.2011.08.033 PubMedGoogle Scholar
  3. 3.
    Kleinewietfeld M, Hafler DA (2014) Regulatory T cells in autoimmune neuroinflammation. Immunol Rev 259:231–244. doi: 10.1111/imr.12169 PubMedGoogle Scholar
  4. 4.
    Reick C, Ellrichmann G, Thöne J, Scannevin RH, Saft C, Linker RA, Gold R (2014) Neuroprotective dimethyl fumarate synergizes with immunomodulatory interferon beta to provide enhanced axon protection in autoimmune neuroinflammation. Exp Neurol. doi: 10.1016/j.expneurol.2014.04.003 PubMedGoogle Scholar
  5. 5.
    Karpuk N, Burkovetskaya M, Fritz T, Angle A, Kielian T (2011) Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 31:414–425. doi: 10.1523/JNEUROSCI.5247-10.2011 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hüll M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer's disease. NBA 21:383–421Google Scholar
  7. 7.
    de Kloet AD, Pioquinto DJ, Nguyen D, Wang L, Smith JA, Hiller H, Sumners C (2014) Obesity induces neuroinflammation mediated by altered expression of the renin–angiotensin system in mouse forebrain nuclei. Physiol Behav. doi: 10.1016/j.physbeh.2014.01.016 Google Scholar
  8. 8.
    Meyer U (2013) Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 42:20–34. doi: 10.1016/j.pnpbp.2011.11.003 PubMedGoogle Scholar
  9. 9.
    Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81. doi: 10.1002/ana.20315 PubMedGoogle Scholar
  10. 10.
    Dobos N, Korf J, Luiten PG, Eisel UL (2010) Neuroinflammation in Alzheimer's disease and major depression. Biol Psychiatry 67:503–504. doi: 10.1016/j.biopsych.2010.01.023 PubMedGoogle Scholar
  11. 11.
    Daulatzai MA (2014) Chronic functional bowel syndrome enhances gut–brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res. doi: 10.1007/s11064-014-1266-6 PubMedGoogle Scholar
  12. 12.
    Calsavara AC, Rodrigues DH, Miranda AS, Costa PA, Lima CX, Vilela MC, Rachid MA, Teixeira AL (2013) Late anxiety-like behavior and neuroinflammation in mice subjected to sublethal polymicrobial sepsis. Neurotox Res 24:103–108. doi: 10.1007/s12640-012-9364-1 PubMedGoogle Scholar
  13. 13.
    Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF (2014) Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci 34:2583–2591. doi: 10.1523/JNEUROSCI.3723-13.2014 PubMedGoogle Scholar
  14. 14.
    Haarman BC, Riemersma-Van der Lek RF, de Groot JC, Ruhe HG, Klein HC, Zandstra TE, Burger H, Schoevers RA, de Vries EF, Drexhage HA, Nolen WA, Doorduin J (2014) Neuroinflammation in bipolar disorder — A[C]–(R)–PK11195 positron emission tomography study. Brain Behav Immun. doi: 10.1016/j.bbi.2014.03.016 PubMedGoogle Scholar
  15. 15.
    Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32:506–516. doi: 10.1016/j.tins.2009.05.009 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Saab CY, Waxman SG, Hains BC (2008) Alarm or curse? The pain of neuroinflammation. Brain Res Rev 58:226–235. doi: 10.1016/j.brainresrev.2008.04.002 PubMedGoogle Scholar
  17. 17.
    Cerejeira J, Firmino H, Vaz-Serra A, Mukaetova-Ladinska EB (2010) The neuroinflammatory hypothesis of delirium. Acta Neuropathol 119:737–754. doi: 10.1007/s00401-010-0674-1 PubMedGoogle Scholar
  18. 18.
    Wisor JP, Schmidt MA, Clegern WC (2011) Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep 34:261–272PubMedCentralPubMedGoogle Scholar
  19. 19.
    Foresti ML, Arisi GM, Shapiro LA (2011) Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res Rev 66:115–122. doi: 10.1016/j.brainresrev.2010.09.002 PubMedGoogle Scholar
  20. 20.
    Ransohoff RM (2014) Call for papers. Neurol Neuroimmunol Neuroinflamm Neurol 82:648–649. doi: 10.1212/WNL.0000000000000159 Google Scholar
  21. 21.
    Frangioni JV (2008) The impact of greed on academic medicine and patient care. Nat Biotechnol 26:503–507. doi: 10.1038/nbt0508-503 PubMedGoogle Scholar
  22. 22.
    Scott A, Khan KM, Cook JL, Duronio V (2004) What is "inflammation"? Are we ready to move beyond Celsus? Br J Sports Med 38:248–249PubMedCentralPubMedGoogle Scholar
  23. 23.
    Marsden J, Budden D, Craig H, Moscato P (2013) Language individuation and marker words: Shakespeare and his Maxwell's demon. PLoS One 8:e66813. doi: 10.1371/journal.pone.0066813.s002 PubMedCentralPubMedGoogle Scholar
  24. 24.
    Slodzinski H, Moran LB, Michael GJ, Wang B, Novoselov S, Cheetham ME, Pearce RK, Graeber MB (2009) Homocysteine-induced endoplasmic reticulum protein (herp) is up-regulated in parkinsonian substantia nigra and present in the core of Lewy bodies. Clin Neuropathol 28:333–343PubMedGoogle Scholar
  25. 25.
    Moran LB, Graeber MB (2008) Towards a pathway definition of Parkinson's disease: a complex disorder with links to cancer, diabetes and inflammation. Neurogenetics 9:1–13. doi: 10.1007/s10048-007-0116-y PubMedCentralPubMedGoogle Scholar
  26. 26.
    Moran LB, Hickey L, Michael GJ, Derkacs M, Christian LM, Kalaitzakis ME, Pearce RK, Graeber MB (2008) Neuronal pentraxin II is highly upregulated in Parkinson's disease and a novel component of Lewy bodies. Acta Neuropathol 115:471–478. doi: 10.1007/s00401-007-0309-3 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Moran LB, Duke DC, Graeber MB (2007) The microglial gene regulatory network activated by interferon-gamma. J Neuroimmunol 183:1–6. doi: 10.1016/j.jneuroim.2006.10.023 PubMedGoogle Scholar
  28. 28.
    Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RK, Graeber MB (2006) Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease. Neurogenetics 7:1–11. doi: 10.1007/s10048-005-0020-2 PubMedGoogle Scholar
  29. 29.
    Filiou MD, Teplytska L, Otte DM, Zimmer A, Turck CW (2012) Myelination and oxidative stress alterations in the cerebellum of the G72/G30 transgenic schizophrenia mouse model. J Psychiatr Res 46:1359–1365. doi: 10.1016/j.jpsychires.2012.07.004 PubMedGoogle Scholar
  30. 30.
    Zhang Y, Filiou MD, Reckow S, Gormanns P, Maccarrone G, Kessler MS, Frank E, Hambsch B, Holsboer F, Landgraf R, Turck CW (2011) Proteomic and metabolomic profiling of a trait anxiety mouse model implicate affected pathways. Mol Cell Proteomics 10(M111):008110. doi: 10.1074/mcp.M111.008110 PubMedGoogle Scholar
  31. 31.
    Filiou MD, Zhang Y, Teplytska L, Reckow S, Gormanns P, Maccarrone G, Frank E, Kessler MS, Hambsch B, Nussbaumer M, Bunck M, Ludwig T, Yassouridis A, Holsboer F, Landgraf R, Turck CW (2011) Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol Psychiatry 70:1074–1082. doi: 10.1016/j.biopsych.2011.06.009 PubMedGoogle Scholar
  32. 32.
    Moscato P, Mendes A, Berretta R (2007) Benchmarking a memetic algorithm for ordering microarray data. Biosystems 88:56–75. doi: 10.1016/j.biosystems.2006.04.005 PubMedGoogle Scholar
  33. 33.
    Szczucinski A, Losy J (2011) CCL5, CXCL10 and CXCL11 chemokines in patients with active and stable relapsing–remitting multiple sclerosis. Neuroimmunomodulation 18:67–72PubMedGoogle Scholar
  34. 34.
    Kohler RE, Comerford I, Townley S, Haylock-Jacobs S, Clark-Lewis I, McColl SR (2008) Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol 18:504–516PubMedGoogle Scholar
  35. 35.
    Cepok S, Schreiber H, Hoffmann S, Zhou D, Neuhaus O, von Geldern G, Hochgesand S, Nessler S, Rothhammer V, Lang M, Hartung H-P, Hemmer B (2009) Enhancement of chemokine expression by interferon beta therapy in patients with multiple sclerosis. Arch Neurol 66:1216–1223PubMedGoogle Scholar
  36. 36.
    Comabella M, Imitola J, Weiner HL, Khoury SJ (2002) Interferon-beta treatment alters peripheral blood monocytes chemokine production in MS patients. J Neuroimmunol 126:205–212PubMedGoogle Scholar
  37. 37.
    Comini-Frota ER, Teixeira AL, Angelo JPA, Andrade MV, Brum DG, Kaimen-Maciel DR, Foss NT, Donadi EA (2011) Evaluation of serum levels of chemokines during interferon-β treatment in multiple sclerosis patients: a 1-year, observational cohort study. CNS Drugs 25:971–981PubMedGoogle Scholar
  38. 38.
    Fischer FR, Santambrogio L, Luo Y, Berman MA, Hancock WW, Dorf ME (2000) Modulation of experimental autoimmune encephalomyelitis: effect of altered peptide ligand on chemokine and chemokine receptor expression. J Neuroimmunol 110:195–208PubMedGoogle Scholar
  39. 39.
    Hasegawa M, Asano Y, Endo H, Fujimoto M, Goto D, Ihn H, Inoue K, Ishikawa O, Kawaguchi Y, Kuwana M, Ogawa F, Takahashi H, Tanaka S, Sato S (2013) Takehara K (2013) Serum chemokine levels as prognostic markers in patients with early systemic sclerosis: a multicenter, prospective, observational study. Mod Rheumatol 23(6):1076–1084. doi: 10.1007/s10165-012-0795-6. Epub 2012 Nov 23 PubMedGoogle Scholar
  40. 40.
    Hertenstein A, Schumacher T, Litzenburger U, Opitz CA, Falk CS, Serafini T, Wick W, Platten M (2011) Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochem Pharmacol 82:632–641PubMedGoogle Scholar
  41. 41.
    Jenh C-H, Cox MA, Cui L, Reich E-P, Sullivan L, Chen S-C, Kinsley D, Qian S, Kim SH, Rosenblum S, Kozlowski J, Fine JS, Zavodny PJ, Lundell D (2012) A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection. BMC Immunol 13:2–2PubMedCentralPubMedGoogle Scholar
  42. 42.
    Kauffman MA, Yankilevich P, Barrero P, Bello R, Marangunich L, Vidal A, Criscuolo M, Diez RA, Sterin Prync A (2009) Whole genome analysis of the action of interferon-beta. Int J Clin Pharmacol Ther 47:328–357PubMedGoogle Scholar
  43. 43.
    Klein RS, Izikson L, Means T, Gibson HD, Lin E, Sobel RA, Weiner HL, Luster AD (2004) IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J Immunol 172:550–559PubMedGoogle Scholar
  44. 44.
    Korniejewska A, McKnight AJ, Johnson Z, Watson ML, Ward SG (2011) Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes. Immunology 132:503–515PubMedCentralPubMedGoogle Scholar
  45. 45.
    Krakauer M, Sorensen PS, Khademi M, Olsson T, Sellebjerg F (2006) Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis. Scand J Immunol 64:155–163PubMedGoogle Scholar
  46. 46.
    Lazzeri E, Romagnani P (2005) CXCR3-binding chemokines: novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord 5:109–118PubMedGoogle Scholar
  47. 47.
    Liu L, Callahan MK, Huang D, Ransohoff RM (2005) Chemokine receptor CXCR3: an unexpected enigma. Curr Top Dev Biol 68:149–181PubMedGoogle Scholar
  48. 48.
    Liu L, Huang D, Matsui M, He TT, Hu T, Demartino J, Lu B, Gerard C, Ransohoff RM (2006) Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3−/−mice with experimental autoimmune encephalomyelitis. J Immunol 176:4399–4409PubMedGoogle Scholar
  49. 49.
    Liu MT, Keirstead HS, Lane TE (2001) Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol 167:4091–4097PubMedGoogle Scholar
  50. 50.
    Mahad DJ, Howell SJL, Woodroofe MN (2002) Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 72:498–502PubMedCentralPubMedGoogle Scholar
  51. 51.
    Mellergard J, Edstrom M, Vrethem M, Ernerudh J, Dahle C (2010) Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Mult Scler 16:208–217PubMedGoogle Scholar
  52. 52.
    Morrell CN, Srivastava K, Swaim A, Lee MT, Chen J, Nagineni C, Hooks JJ, Detrick B (2011) Beta interferon suppresses the development of experimental cerebral malaria. Infect Immun 79:1750–1758PubMedCentralPubMedGoogle Scholar
  53. 53.
    Muller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJC, Campbell IL (2007) CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 179:2774–2786PubMedGoogle Scholar
  54. 54.
    Ondeykal JG, Herath KB, Jayasuriya H, Polishook JD, Bills GF, Dombrowski AW, Mojena M, Koch G, DiSalvo J, DeMartino J, Guan Z, Nanakorn W, Morenberg CM, Balick MJ, Stevenson DW, Slattery M, Borris RP, Singh SB (2005) Discovery of structurally diverse natural product antagonists of chemokine receptor CXCR3. Mol Divers 9:123–129PubMedGoogle Scholar
  55. 55.
    Ospelt C, Kurowska-Stolarska M, Neidhart M, Michel BA, Gay RE, Laufer S, Gay S (2008) The dual inhibitor of lipoxygenase and cyclooxygenase ML3000 decreases the expression of CXCR3 ligands. Ann Rheum Dis 67:524–529PubMedGoogle Scholar
  56. 56.
    Salmaggi A, Gelati M, Dufour A, Corsini E, Pagano S, Baccalini R, Ferrero E, Scabini S, Silei V, Ciusani E, De Rossi M (2002) Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes: possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J Interferon Cytokine Res 22:631–640PubMedGoogle Scholar
  57. 57.
    Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (2000) Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 26:133–142PubMedGoogle Scholar
  58. 58.
    Smit MJ, Verdijk P, van der Raaij-Helmer EM, Navis M, Hensbergen PJ, Leurs R, Tensen CP (2003) CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C-dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood 102:1959–1965. doi: 10.1182/blood-2002-12-3945 PubMedGoogle Scholar
  59. 59.
    Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815PubMedCentralPubMedGoogle Scholar
  60. 60.
    Stanford MM, Issekutz TB (2003) The relative activity of CXCR3 and CCR5 ligands in T lymphocyte migration: concordant and disparate activities in vitro and in vivo. J Leukoc Biol 74:791–799PubMedGoogle Scholar
  61. 61.
    Szczucinski A, Kalinowska A, Losy J (2007) CXCL11 (Interferon-inducible T-cell alpha chemoattractant) and interleukin-18 in relapsing–remitting multiple sclerosis patients treated with methylprednisolone. Eur Neurol 58:228–232PubMedGoogle Scholar
  62. 62.
    Szczucinski A, Losy J (2007) Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115:137–146PubMedGoogle Scholar
  63. 63.
    Verzijl D, Storelli S, Scholten DJ, Bosch L, Reinhart TA, Streblow DN, Tensen CP, Fitzsimons CP, Zaman GJR, Pease JE, de Esch IJP, Smit MJ, Leurs R (2008) Noncompetitive antagonism and inverse agonism as mechanism of action of nonpeptidergic antagonists at primate and rodent CXCR3 chemokine receptors. J Pharmacol Exp Ther 325:544–555PubMedCentralPubMedGoogle Scholar
  64. 64.
    Xie JH, Nomura N, Lu M, Chen S-L, Koch GE, Weng Y, Rosa R, Di Salvo J, Mudgett J, Peterson LB, Wicker LS, DeMartino JA (2003) Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol 73:771–780PubMedGoogle Scholar
  65. 65.
    Zhu Y-N, Zhong X-G, Feng J-Q, Yang Y-F, Fu Y-F, Ni J, Liu Q-F, Tang W, Zhao W-M, Zuo J-P (2006) Periplocoside E inhibits experimental allergic encephalomyelitis by suppressing interleukin 12-dependent CCR5 expression and interferon-gamma-dependent CXCR3 expression in T lymphocytes. J Pharmacol Exp Ther 318:1153–1162PubMedGoogle Scholar
  66. 66.
    Rao JS, Kellom M, Kim H-W, Rapoport SI, Reese EA (2012) Neuroinflammation and synaptic loss. Neurochem Res 37:903–910. doi: 10.1007/s11064-012-0708-2 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Streit WJ (2010) Microglial activation and neuroinflammation in Alzheimer’s disease: a critical examination of recent history. Front Aging Neurosci 2:22. doi: 10.3389/fnagi.2010.00022 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Ramanan VK, Saykin AJ (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegenerative Dis 2:145–175. doi: 10.1111/apt.12666 Google Scholar
  69. 69.
    Boulanger LM, Huh GS, Shatz CJ (2001) Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr Opin Neurobiol 11:568–578PubMedGoogle Scholar
  70. 70.
    Graeber MB, Streit WJ, Kreutzberg GW (1988) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J Neurosci Res 21:18–24. doi: 10.1002/jnr.490210104 PubMedGoogle Scholar
  71. 71.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178. doi: 10.1016/j.cell.2007.10.036 PubMedGoogle Scholar
  72. 72.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. doi: 10.1016/j.neuron.2012.03.026 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Bialas AR, Stevens B (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16:1773–1782. doi: 10.1038/nn.3560 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Zabel MK, Kirsch WM (2013) From development to dysfunction: microglia and the complement cascade in CNS homeostasis. Ageing Res Rev 12:749–756. doi: 10.1016/j.arr.2013.02.001 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Zhang J, Malik A, Choi HB, Ko RW, Dissing-Olesen L, MacVicar BA (2014) Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 82:195–207. doi: 10.1016/j.neuron.2014.01.043 PubMedGoogle Scholar
  76. 76.
    Graeber MB (2010) Changing face of microglia. Science 330:783–788. doi: 10.1126/science.1190929 PubMedGoogle Scholar
  77. 77.
    Graeber MB, Streit WJ (1990) Microglia: immune network in the CNS. Brain Pathol 1:2–5PubMedGoogle Scholar
  78. 78.
    Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678. doi: 10.1038/nature11729 PubMedGoogle Scholar
  79. 79.
    Inoue Y, Shirasuna K, Kimura H, Usui F, Kawashima A, Karasawa T, Tago K, Dezaki K, Nishimura S, Sagara J, Noda T, Iwakura Y, Tsutsui H, Taniguchi S, Yanagisawa K, Yada T, Yasuda Y, Takahashi M (2014) NLRP3 regulates neutrophil functions and contributes to hepatic ischemia–reperfusion injury independently of inflammasomes. J Immunol (Baltimore, Md : 1950) 192:4342–4351. doi: 10.4049/jimmunol.1302039 Google Scholar
  80. 80.
    Gijsbers K, Van Assche G, Joossens S, Struyf S, Proost P, Rutgeerts P, Geboes K, Van Damme J (2004) CXCR1-binding chemokines in inflammatory bowel diseases: down-regulated IL-8/CXCL8 production by leukocytes in Crohn's disease and selective GCP-2/CXCL6 expression in inflamed intestinal tissue. Eur J Immunol 34:1992–2000PubMedGoogle Scholar
  81. 81.
    Hosomi S, Oshitani N, Kamata N, Sogawa M, Okazaki H, Tanigawa T, Yamagami H, Watanabe K, Tominaga K, Watanabe T, Fujiwara Y, Maeda K, Hirakawa K, Arakawa T (2011) Increased numbers of immature plasma cells in peripheral blood specifically overexpress chemokine receptor CXCR3 and CXCR4 in patients with ulcerative colitis. Clin Exp Immunol 163:215–224PubMedCentralPubMedGoogle Scholar
  82. 82.
    Savarin-Vuaillat C, Ransohoff RM (2007) Chemokines and chemokine receptors in neurological disease: raise, retain, or reduce? Neurotherapeutics 4:590–601PubMedGoogle Scholar
  83. 83.
    De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschle C, Aloisi F (1995) The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol 54:175–187PubMedGoogle Scholar
  84. 84.
    McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 27:741–749. doi: 10.1016/S0278-5846(03)00124-6 PubMedGoogle Scholar
  85. 85.
    O'Callaghan JP, Sriram K, Miller DB (2008) Defining “Neuroinflammation”. Ann N Y Acad Sci 1139:318–330. doi: 10.1196/annals.1432.032 PubMedGoogle Scholar
  86. 86.
    Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol 8:382–397. doi: 10.1016/S1474-4422(09)70062-6 PubMedGoogle Scholar
  87. 87.
    Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214. doi: 10.1038/mp.2012.110 PubMedGoogle Scholar
  88. 88.
    Van Parijs L, Abbas AK (1998) Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280:243–248PubMedGoogle Scholar
  89. 89.
    Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, Pritchard-Briscoe H, Wotherspoon JS, Loblay RH, Raphael K (1988) Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334:676–682. doi: 10.1038/334676a0 PubMedGoogle Scholar
  90. 90.
    Ferguson LR, Browning BL, Huebner C, Petermann I, Shelling AN, Demmers P, McCulloch A, Gearry RB, Barclay ML, Philpott M (2008) Single nucleotide polymorphisms in human Paneth cell defensin A5 may confer susceptibility to inflammatory bowel disease in a New Zealand Caucasian population. Dig Liver Dis 40:723–730PubMedGoogle Scholar
  91. 91.
    Streit WJ, Xue QS, Braak H, del Tredici K (2014) Presence of severe neuroinflammation does not intensify neurofibrillary degeneration in human brain. Glia 62:96–105. doi: 10.1002/glia.22589 PubMedGoogle Scholar
  92. 92.
    Graeber MB (1999) Genetics of neuroinflammation in Alzheimer disease. Neurogenetics 2:135–136PubMedGoogle Scholar
  93. 93.
    Gislason GH, Rasmussen JN, Abildstrom SZ, Schramm TK, Hansen ML, Fosbol EL, Sorensen R, Folke F, Buch P, Gadsboll N, Rasmussen S, Poulsen HE, Kober L, Madsen M, Torp-Pedersen C (2009) Increased mortality and cardiovascular morbidity associated with use of nonsteroidal anti-inflammatory drugs in chronic heart failure. Arch Intern Med 169:141–149. doi: 10.1001/archinternmed.2008.525 PubMedGoogle Scholar
  94. 94.
    Beeri MS, Schmeidler J, Lesser GT, Maroukian M, West R, Leung S, Wysocki M, Perl DP, Purohit DP, Haroutunian V (2012) Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology. Neurobiol Aging 33:1258–1264. doi: 10.1016/j.neurobiolaging.2011.02.011 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Reines SA, Block GA, Morris JC, Liu G, Nessly ML, Lines CR, Norman BA, Baranak CC, Rofecoxib Protocol 091 Study G (2004) Rofecoxib: no effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology 62:66–71Google Scholar
  96. 96.
    Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, Farlow MR, Jin S, Thomas RG, Thal LJ, S Alzheimer's Disease Cooperative (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826. doi: 10.1001/jama.289.21.2819 PubMedGoogle Scholar
  97. 97.
    Aisen PS (2002) The potential of anti-inflammatory drugs for the treatment of Alzheimer's disease. Lancet Neurol 1:279–284PubMedGoogle Scholar
  98. 98.
    Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grunblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wullner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2:52ra–73ra. doi: 10.1126/scitranslmed.3001059 Google Scholar
  99. 99.
    Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137B:5–16. doi: 10.1002/ajmg.b.30195 PubMedGoogle Scholar
  100. 100.
    Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101:2173–2178. doi: 10.1073/pnas.0308512100 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Walker DG, Caselli RJ, Kukull WA, McKeel D, Morris JC, Hulette C, Schmechel D, Alexander GE, Reiman EM, Rogers J, Stephan DA (2007) Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 28:311–322. doi: 10.1152/physiolgenomics.00208.2006 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 105:4441–4446. doi: 10.1073/pnas.0709259105 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Han MH, Lundgren DH, Jaiswal S, Chao M, Graham KL, Garris CS, Axtell RC, Ho PP, Lock CB, Woodard JI, Brownell SE, Zoudilova M, Hunt JF, Baranzini SE, Butcher EC, Raine CS, Sobel RA, Han DK, Weissman I, Steinman L (2012) Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. J Exp Med 209:1325–1334. doi: 10.1084/jem.20101974 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, Thomas EA (2008) Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 1239:235–248. doi: 10.1016/j.brainres.2008.08.023 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Galamb O, Spisak S, Sipos F, Toth K, Solymosi N, Wichmann B, Krenacs T, Valcz G, Tulassay Z, Molnar B (2010) Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J Cancer 102:765–773. doi: 10.1038/sj.bjc.6605515 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Gyorffy B, Molnar B, Lage H, Szallasi Z, Eklund AC (2009) Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples. PLoS One 4:e5645. doi: 10.1371/journal.pone.0005645 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Chen YW, Shi R, Geraci N, Shrestha S, Gordish-Dressman H, Pachman LM (2008) Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis. BMC Immunol 9:43. doi: 10.1186/1471-2172-9-43 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Olsen J, Gerds TA, Seidelin JB, Csillag C, Bjerrum JT, Troelsen JT, Nielsen OH (2009) Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data. Inflamm Bowel Dis 15:1032–1038. doi: 10.1002/ibd.20879 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michaela D. Filiou
    • 1
  • Ahmed Shamsul Arefin
    • 2
  • Pablo Moscato
    • 2
  • Manuel B. Graeber
    • 3
  1. 1.Max Planck Institute of PsychiatryMunichGermany
  2. 2.Centre for Bioinformatics, Biomarker Discovery and Information-based Medicine, Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsAustralia
  3. 3.Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health SciencesUniversity of SydneySydneyAustralia

Personalised recommendations